

Received by Email

2022-01-31

Stormwater Site Plan Carrik Court

City of Mukilteo, Washington

Prepared for: 214-WLD Carrik Court, LLC 1010 Market Street Kirkland, WA 98033

Prepared by: CPH Consultants Matthew J. Hough, PE Kyle Beller, EIT 11321-B NE 120th Street Kirkland, WA 98034

January 28, 2022 CPH Project No. 0054-20-034

STORMWATER SITE PLAN

FOR

CARRIK COURT

CITY OF MUKILTEO, WA

TABLE OF CONTENTS

SECTION 1 -	PROJECT OVERVIEW1
	FIGURE 1 – VICINITY MAP
SECTION 2 -	Existing Conditions Summary
Section 3 -	OFF-SITE ANALYSIS4
	OFFSITE ANALYSIS
	UPSTREAM ANALYSIS
	DOWNSTREAM ANALYSIS
SECTION 4 -	Permanent Stormwater Control plan
	Performance Standards and Goals
	Pre-Developed Site Hydrology
	ON-SITE STORMWATER MANAGEMENT
	Developed Site Hydrology
	Conveyance System Analysis and Design
	WATER QUALITY TREATMENT
SECTION 5 -	CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN
FIGURES	
	Figure 2 – Existing Site Conditions
	FIGURE 3 – DEVELOPED SITE CONDITIONS
	Figure 4 – Existing Drainage Basins
	FIGURE 5 – DEVELOPED DRAINAGE BASINS
	FIGURE 6 – 88 th Street Southwest Bypass
	Figure 7 – Offsite Drainage Conditions
APPENDICES	
	APPENDIX A – NRCS SOILS DATA, INFILTRATION & GEOTECHNICAL REPORT
	Appendix B – WWHM Input Parameters and Results
	Appendix C – Land Use Spreadsheet
	APPENDIX D – WATER QUALITY DETAILS
	Appendix E – Downstream Analysis
	Appendix F – Operations and Maintenance Manual

Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

SECTION 1 – PROJECT OVERVIEW

This Storm Drainage Report (SDR) describes the engineering analysis of the surface water conditions, proposed development improvements, and required storm drainage facilities for the *Carrik Court* project located in Mukilteo, Washington. The report summarizes the design criteria for the storm drainage collection systems, associated flow control (i.e. detention) and water quality facilities, and temporary construction Best Management Practices (BMPs) proposed for the project. Figure 1 (Vicinity Map) illustrates the general location of the project site. Figures 2 and 3 of this report (see *Figures* section) illustrate the existing (i.e., pre-developed) and proposed developed conditions of the project area, respectively.

Figure 1 - Vicinity Map

Carrik Court is an urban residential community proposed with 114 new single-family residential townhome units and 16 live/work townhome residences on an approximately 9.6-acre site in the north-central portion of the City of Mukilteo. The site plan and residential buildings have been thoughtfully configured around contiguous common open space areas conveniently connected by a system of sidewalks and trails with a variety of active and passive recreation amenities for the residents. The live/work residential units have been sited along the frontage of Mukilteo Speedway consistent with the mixed-use provisions of Mukilteo Municipal Code (MMC) 17.25C.030.B.2b.

Private roads and/or drive aisles will provide access to the individual residential townhome buildings. Two separate commercial driveway approaches will connect these onsite roads/drives to the west right-of-way of SR525. The frontage of SR525 is expected to require pavement widening along with continuous curb, gutter, sidewalk, and landscape improvements to meet City standard. The extent/scope of frontage improvements for the project are expected to be known following the preapplication meeting with the City.

The current site plan includes more than twice the minimum required open space, including a large natural area in the south that will incorporate a wetland and stream and their associated buffers. This natural open space amenity will be accessible to the residents of the community via an improved trail system that will include viewpoints and passive recreation facilities such as benches, tables, and potentially interpretive signage. Later sections of this narrative and the accompanying reports provide additional details regarding these onsite critical area resources, including enhancements related to their partial relocation onsite.

SECTION 2 – EXISTING CONDITIONS SUMMARY

The project site is comprised of three real tax parcels (Snohomish County Parcel No. 00611600013402, 00611600013500, and 00611600013600) with a total area of approximately 9.6 acres. The western and southern approximately 6.5-acre portion of the site are zoned Planned Community Business (PCB) and the remaining north and northeast frontages are zoned Community Business (CB). The existing parcels currently contain two residential buildings and associated outbuildings. The site is bordered to the north and west by developed parcels, to the south by 88th Street Southwest, with access provided by Mukilteo Speedway via a concrete driveway at its easterly frontage.

The property is underlain by medium dense to dense glacial till deposits and isolated areas of fill. The general soil classification of the developable portion of the site is characterized by the Natural Resources Conservation Service (NRCS) as Vashon glacial till with Alderwood-Urban land complex and Alderwood gravelly sandy loam as the primary soil underlying the project site. The hydrogeologic and geotechnical reports along with the NRCS Web Soil Survey data are provided in Appendix A.

The northern and southern portions of the site are mostly undeveloped. The central, approximately 3 acres of the site was historically cleared and graded and is currently covered by mostly pasture grass and some maintained landscape and paved areas. This sparsely developed portion of the site contains an existing detached single-family residence, private gravel and asphalt paved driveways and parking areas, and associated outbuildings. The Existing topography has approximately 40 feet of elevation relief from the northeast corner of the site towards the southwest corner of the site. Critical areas comprised of one Category IV wetland and an unnamed Type 5 stream exist on the southern portion of the site.

SECTION 3 – OFFSITE ANALYSIS

The existing offsite land use and storm drainage conditions were evaluated using a variety of available online resources including the City's Stormwater Network Viewer, aerial imagery, GIS information, and Snohomish County Planning and Development Services (PDS) Map Portal. The project survey data and agency record drawings were additional sources of information for this offsite analysis. The following narrative of the offsite drainage conditions is also illustrated by Figure 7, Offsite Drainage Conditions.

Upstream Analysis

There are two threshold discharge areas (TDAs) and separate upstream contributing storm drainage basins for the project. The north TDA receives runoff as sheet and shallow concentrated flows from the roadway pavement of SR525 (Mukilteo Speedway) north from about midway along the east boundary. The majority of this contributing offsite, upstream basin is collected by a biofiltration swale located within the lower, very western margin of the SR525 right-of-way. It discharges treated storm water to an onsite drainage course. This drainage course is sparsely vegetated with an earthen bottom over a good portion of its length. It is primarily formed by the natural topography that falls and flows to the northwest toward the angle point ("notch") in the northwest boundary. A recent townhome project—the Courtyard Townhomes—developed the property immediately adjacent to this northwest boundary and installed a 12-inch culvert to collect and continue the offsite, downstream conveyance of the flows from this drainage course to the west.

The south TDA for the site is currently a mix of undeveloped forested areas in the southern limits and cleared, graded, and sparsely vegetated pasture with some paved areas and residential structures. Offsite upstream areas contribute runoff to the site's south TDA as sheet and shallow concentrated runoff from the shoulder and paved surfaces of both SR525 and 88th Street SW. The street drainage system on the north side of the intersection of SR525 and 88th Street SW collects a sizable upstream subbasin and discharges to the existing onsite Type 5 stream via an 18-inch concrete culvert. The land use cover within this upstream subbasin is comprised of mostly residential subdivisions of moderate density with associated roadways improvements. The roadway sections vary in this upstream contributing area with some having full curb, gutter, and sidewalk and below-grade street drainage systems and others have narrow shoulders with open conveyance ditches and culverts.

Downstream Analysis

The conveyance systems that collect the site's north TDA are comprised of culverts, below grade pipes, open channels, and a wetland. The 12-inch culvert that collects runoff from the onsite drainage at the "notch" at the northwest boundary drains into a short reach of below grade pipes and catch basins that discharge to the buffer of a Category IV wetland. This wetland overflows to Naketa Beach Creek approximately 0.04 miles (220 feet) north of the northwest boundary of the site. Naketa Beach Creek is a narrow urban stream that meanders and flows north and west along the perimeter of commercial sites and through several residential yards within the Smugglers Cove subdivision. A culvert of unknown size and material conveys Naketa Beach Creek under Smugglers Cove Lane. This culvert discharges to a daylight portion of Naketa Beach Creek that flows north along the side yard of a residential lot (8465 Smugglers Cove Lane) into a forested, approximately 370-foot reach of open channel in the open space adjacent to the south right-of-way of 84th Street SW. A culvert located approximately 0.25 miles downstream of the project site just east of the intersection of 53rd Avenue West and 84th

Street SW collects the flows from Naketa Beach Creek and continues its conveyance north and west via the public road drainage system.

The south TDA of the site drains generally west to a complex of Class IV wetlands and a Type 5 stream. These areas ultimately discharge and converge to an earthen and vegetated roadside ditch within the 88th Street SW right-of-way. This ditch continues to flow west from the project's point of compliance (POC2) at the southwest corner of the site toward a culvert located approximately 0.09 miles (460 feet) downstream of the site. The existing culvert drains south into the existing street drainage system located along the south side of 88th Street SW where it then flows east for approximately 0.03 miles (140 feet) to a connection with another City drainage system that flows south presumably in easements over several private properties. This public storm drainage reach system is comprised of approximately 0.07 miles (365 feet) of below grade pipe that outlets to the upstream end of an approximately 0.04 miles (235 feet) of an unnamed open channel drainage course. The drainage course appears to occur within a heavily vegetated ravine over private property up to a confluence with Smuggler's Gulch Creek approximately 0.24 miles downstream of the project site. Smuggler's Gulch Creek continues to flow west as an open channel, natural drainage course though residential yard areas from this point for about another 0.06 miles (290 feet) where it is collected by a culvert in the street drainage system along the east side of 53rd Avenue West.

SECTION 4 – Permanent Stormwater Control Plan

Performance Standards, Goals and Facility Proposals

The storm drainage analysis and facilities design for this project are proposed in general accordance with the 2012 Department of Ecology Stormwater Management Manual for Western Washington (SMMWW), as amended in December 2014. The project is classified as New Development and will result in greater than 5,000 square-feet of new impervious surface, therefore all nine Minimum Requirements for stormwater management specified by the manual are applicable.

The hydrologic analysis of the runoff conditions for the project site was performed using the Western Washington Hydrologic Model 2012 (WWHM) software to generate peak design flow rates and volumes. A detention vault and detention chambers are proposed in the west and southwest portion of the site to treat and detain runoff. Appendix B contains the WWHM model results for the proposed stormwater system.

Pre-developed Site Hydrology

Table 4.1 shows the pre-developed land use inputs used in the WWHM model and Table 4.2-4.3 summarizes the resulting peak design runoff rates. See Figure 4 for pre-developed drainage basins.

Percip	Land Use Area (ac)			
Dasin	Forest	Lawn	Impervious	Total
North Basin (POC 1)	3.42	0.000	0.000	3.42
Upstream North Basin (POC 1)	0.000	0.000	0.277	0.277
South Basin (POC 2)	0.394	0.000	0.000	0.394
Upstream South Basin (POC 2)	0.000	0.000	0.095	0.095
Drive G Basin (POC 2)	0.580	0.000	0.000	0.580

Table 4.1 - Pre-developed Drainage Subbasins

Table 4.2 – Pre-developed Peak Flows (POC 1)

Event	Flow Rate (cfs)		
2-yr	0.1246		
10-yr	0.1709		
25-yr	0.2526		
50-yr	0.2911		
100-yr	0.3325		

Table 4.3 – Pre-developed Peak Flows (POC 2)

Event	Flow Rate (cfs)
2-yr	0.0808
10-yr	0.1218
25-yr	0.1530
50-yr	0.2338
100-yr	0.2735

On-Site Stormwater Management

Minimum Requirement #5 addresses the application of on-site stormwater management BMPs with the intent to "infiltrate, disperse, and retain stormwater runoff on-site to the extent feasible without causing flooding or erosion impacts." Requirements for this project are specified on Table I-2.5.1 and Figure I-2.5.1. These are included here with the relevant text highlighted.

The feasibility of the BMPs in DOE List #2 have been evaluated for the Carrik Court project as a new development inside the UGA. BMPs listed were considered for each type of surface to determine if their use/application for this project was feasible based on the following criteria:

- 1. Design criteria, limitations, and infeasibility criteria identified for each BMP in this manual; and
- 2. Competing Need Criteria listed in Chapter V-5 On-Site Stormwater Management.

Lawn and landscaped areas:

1. Post-Construction Soil Quality and Depth in accordance with BMP T5.13

This BMP is feasible. All soils in lawn and landscaped areas will meet the design guidelines of BMP T5.13. This will be accomplished through one or more of the following implementation methods identified in the manual:

- a. retention of undisturbed native vegetation and soil, or
- b. amendment of existing site topsoil, or
- c. stockpiling and reuse of existing topsoil or import of approved topsoil mix.

Roofs:

1. Full Dispersion in accordance with BMP T5.30, or Downspout Full Infiltration Systems in accordance with BMP T5.10A

These BMPs are not feasible as there are no feasible locations on site where the required vegetated flow path length can be accommodated. The glacial till soil on site exhibits low permeability and is not a suitable receptor for infiltration or retention facilities.

2. Bioretention facilities in accordance with BMP T7.30

This BMP is not feasible. The glacial till soil on site exhibits low permeability and is not a suitable receptor for infiltration or retention facilities.

3. Downspout Dispersion Systems in accordance with BMP T5.10B

This BMP is not feasible. The proposed lots, designed in accordance with City of Mukilteo PRD requirements, are not large enough to accommodate the vegetated flow path required for dispersion.

4. Perforated Stub-out Connections in accordance with BMP T5.10C

This BMP is feasible except where un-weathered glacial till soil is exposed that will likely interfere with the trench bottom.

Other Hard Surfaces:

1. Full Dispersion in accordance with BMP T5.30

This BMP is not feasible. The site does not have any critical areas and flooding or erosion impacts are not anticipated. There are also no feasible locations on site where the required vegetated flow path length can be accommodated.

2. Permeable Pavement in accordance with BMP T5.156

This BMP is not feasible. The glacial till soil on site exhibits low permeability and is not a suitable receptor for infiltration or retention facilities.

3. Bioretention facilities in accordance with BMP T7.30

This BMP is not feasible. The glacial till soil on site exhibits low permeability and is not a suitable receptor for infiltration or retention facilities.

4. Sheet Flow Dispersion in accordance with BMP T5.12, or Concentrated Flow Dispersion in accordance with BMP T5.11

This BMP is not feasible. The proposed lots are not large enough to accommodate the vegetated flow path required for dispersion.

The geotechnical report (Appendix A) provides additional confirmation that infiltration stormwater management BMPs are not practically feasible based on in-situ soil conditions.

Developed Site Hydrology

The Standard Flow Control Requirement, part of Minimum Requirement #7, will be applied and states that, "Stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow."

Developed site conditions (Figure 3) within the area were modeled based on the basin configuration shown in Figure 5 and the land use covers summarized in Table 4.4 and Appendix C. Impervious road and sidewalk surface, both on-site and frontage, was calculated from the proposed footprint shown on the improvement plans.

There are two threshold discharge areas on the site. The north basin collects, conveys, and discharges flows with no flow control standards to a point of compliance #1 (POC 1). This threshold discharge area (North Basin) meets the LID performance standards. This basin is mainly comprised of pervious surfaces.

The second threshold discharge area (south basin) is located adjacent to the north basin. The developed basins are shown and detailed in Figure 5. There is one sub-basin referred to as Drive G basin that is located within the south basin. The Drive G basin shares the same point of compliance #2 (POC 2) as the south basin but will have localized detention chambers in drive aisles. There is a portion of proposed pollution generating impervious surface along the Mukilteo Speedway frontage that will not be collected, however, an approximately equivalent area of existing roadway upstream will be collected and conveyed to the stormwater vault (Figure 5). Similarly, there will be a water quality treatment swap located on the frontage of 88th Street southwest. A bypass area west of the Drive A

entrance will not be collected and treated. A larger area of existing pollution generating surface that extends from the Drive A entrance east to the intersection of 88th Street southwest and Mukilteo Speedway will be collected and treated (Figure 6).

An infiltration detention vault and a localized detention chamber facility is proposed for the project. The vault and the chambers have controlled discharge to the same existing wetland area at the southwest corner of the site. The vault provides flow control by utilizing an 18-inch diameter riser with a 2-orifice design to meet the applicable standards and will discharge at the southwest corner of the project site. The 50-year stage storage volume for the vault is 2.78 acre-feet. The vault has been designed and modeled to infiltrate at a rate of 0.04 inches/hour. This long-term design infiltration rate was recommended in the infiltration report seen in Appendix A.

The chamber facility located in the drive aisles of Drive G, provides flow control with a 12-inch diameter riser has a diameter with a 1-orifice design used to meet the applicable standards and will discharge at the southwest corner of the project site.

Table 4.4 shows the developed land use inputs used in the WWHM model. Tables 4.5 and 4.6 summarizes the mitigated peak design flow rates.

Racin	Land Use Area (ac)					
Dasin	Forrest	Pasture	Lawn	Impervious	Total	
Developed (North)	0.000	0.360	0.000	0.210	0.570	
Upstream Basin North	0.000	0.000	0.000	0.118	0.118	
North Bypass Basin	0.000	0.000	0.000	0.043	0.043	
Drive G Basin	0.000	0.195	0.000	0.385	0.580	
Developed (South)	0.000	2.336	0.000	4.950	7.286	
Offsite South	0.000	0.377	0.000	0.184	0.561	
South Bypass Basin	0.000	0.059	0.000	0.349	0.408	

Table 4.4 - Developed Drainage Sub-bas
--

Table 4.5 – Developed Peak Flows (POC 1)

	-
Event	Flow Frequency Return Periods at Point of Compliance (cfs)
2-yr	0.1110
10-yr	0.1792
25-yr	0.2188
50-yr	0.2508
100-yr	0.2850

Table 4.6 – Developed Peak Flows (POC 2)

Event	Flow Frequency Return Periods at Point of Compliance (cfs)
2-yr	0.0403
10-yr	0.1159
25-yr	0.1859
50-yr	0.2588
100-yr	0.3548

Conveyance System Analysis and Design

The project proposes to collect on-site runoff and convey it to either the stormwater vault or detention chambers prior to release offsite. The majority of the site runoff will be conveyed to the vault. Surface runoff will be collected by roof drains, roadway and yard inlets, and a system of below grade pipes on the site. These systems convey runoff to either the onsite detention vault or detention chamber facility for flow control and treatment. Along the 88th Street southwest frontage, pipe conveyance is proposed to collect surface flows from pollution generating surfaces and direct them to a water quality facility located along the curb at the entrance of Drive A. A duplex pump station facility is proposed immediately following the control structure of the vault. Flows the vault, by way of the control structure, and flows from the chambers combine at the pump station. From here the combined flows are conveyed to the main onsite water quality facility.

Water Quality Treatment

Basic water quality treatment, per Minimum Requirement #6, is required for surface water runoff from all new pollution generating surfaces created with development of the site. Onsite water quality treatment is proposed by utilizing a Contech ZPG Stormfilter downstream of the detention vault and chamber facilities. The water quality facilities will receive mitigated flows from both the vault and chambers. This shared water quality facility is located off the southeast corner of the detention vault. The media filter facility has been sized to treat the cumulative 2-year mitigated release rate from the two flow control facilities (Q=0.403 cfs). A detail of the media filter design is included in Appendix D. A separate, standalone Contech ZPG StormFilter water quality facility is proposed along the 88th Street southwest frontage near the entrance of Drive A (see Figure 6 and Appendix D).

SECTION 5 – Construction Stormwater Pollution Prevention Plan

Storm Water Pollution Prevention Plan (SWPPP)

1. Mark Clearing Limits

To prevent disturbance of project areas not designated for construction, a construction clearing limits fence or silt fence will be installed by the Contractor along the perimeter of the project site to protect existing native area outside of the mitigation area. These fences will be installed in accordance with the details and specifications provided in the Plans prior to any clearing and grading activities. All sensitive areas and buffers shall also be fenced prior to construction activities.

2. Establish Construction Access

The contractor shall employ appropriate BMP measures to prevent transport of sediment offsite by motor vehicles.

3. Control Flow Rates

The contractor will be responsible for installing temporary erosion control BMP's to control the release rate and water quality of surface water from active construction areas.

4. Install Sediment Controls

On-site sediment retention will be controlled by a combination of silt fences, temporary interceptor trenches, and the proposed detention pond as shown on the Plans. The contractor shall inspect and provide regular maintenance of these facilities throughout the duration of construction to ensure maximum sediment control.

5. Stabilize Soils

Temporary and permanent cover measures will be provided by the Contractor to protect disturbed areas. Straw mulching is typically used to provide temporary protection from erosion at exposed soil areas. Plastic covering may also be used in order to protect cut and fill slopes, and/or to encourage grass growth in newly seeded areas. Disturbed areas that remain unworked for at least 7 days will be seeded and mulched to provide permanent cover measure and to limit erosion potential.

Water will be used by the Contractor as allowed by local agency regulations and applicable SWMM standards to prevent wind transport of exposed soils. Exposed soils will be sprayed until wet and re-sprayed as needed during dry weather periods.

6. Protect Slopes

The project does not require any disturbance of soils within steep slope or erosion hazard areas. Temporary and permanent seeding to stabilize exposed soil areas is expected to be sufficient for protecting on-site slopes—whether constructed or at disturbed native areas. Plastic covering may also be used to protect cut and fill slopes if seasonal limitations warrant and/or to encourage grass growth in newly seeded areas. The contractor shall take all practical efforts including installation of temporary interceptor ditches to direct potential storm water runoff away from the top of on-site slopes.

7. Protect Drain Inlet

All storm drain inlets made operable during construction or otherwise existing in the vicinity of work areas shall be protected using pre-manufactured filter fabric catch basin inserts to protect against construction storm water runoff entering the conveyance system. The Contractor will be responsible for maintenance of all temporary sediment control BMP's during construction, including removal of accumulated sediment, as well as for the ultimate removal of these controls and remaining accumulated sediment upon completion of construction.

8. Stabilize Channels and Outlets

Methods of protection may include silt fence installation and maintenance, catch basin inserts, and temporary interceptor ditches. Vegetated areas shall be maintained whenever possible or practical to provide for natural filtration of construction storm water discharges.

9. Control Pollutants

Special provisions shall be taken to reduce the risk of pollutant contamination from the construction access, concrete handling/wash areas, and sawcutting/surfacing activities. No water used in or contacting areas of construction shall be allowed to drain directly towards onsite buffer areas or wetlands without prior treatment. Vehicle maintenance shall only be performed at approved on-site areas and only after proper containment devices are in place downstream of those areas. Any flammable or otherwise hazardous liquids shall be stockpiled only at the approved construction staging area.

10. Control Dewatering

Temporary dewatering efforts may be required to facilitate some elements of construction such as storm drainage and utilities installation. Any such dewatering volumes encountered will be collected and controlled using pumps and sediment traps or tanks. Discharge from these controlled onsite facilities will be dispersed to approved areas of native vegetation or otherwise treated using setting tanks or other mechanical filtration facilities prior to release to downstream systems as required to conform with General Construction Stormwater permit standards.

11. Maintain BMPs

All TESC measures will be inspected and maintained on a regular basis following the maintenance requirements identified for each in the Plans and/or the project's Storm Water Pollution Prevention Plan (SWPPP). An ESC supervisor will be designated by the Contractor and the name, address and phone number of the ESC supervisor will be given to the regulatory jurisdiction prior to the start of construction.

The ESC supervisor will inspect the site at least once a month during the dry season, weekly during the wet season, and within 24 hours of each runoff-producing storm event. An ESC maintenance report will be used as a written record of all maintenance in accordance with the project SWPPP

12. Manage the Project

The Contractor will be responsible for the phasing of erosion and sediment controls during construction so that they are adequately coordinated with all construction activities. The Contractor will be responsible for maintenance of all temporary sediment control BMP's during

construction, including removal of accumulated sediment, as well as for the ultimate removal of these controls and cleaning of existing permanent storm drainage facilities upon completion of construction.

13. Protect Low Impact Development BMPs

The project geotechnical engineer determined that the onsite soils are not favorable for infiltrative BMPs. As such, no low impact development BMPs are proposed with this project. No special protection is required.

FIGURES

Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

С

CARRIK COURT FIGURE 3- DEVELOPED SITE CONDITIONS

С

CARRIK COURT FIGURE 5 - DEVELOPED STORM DRAINAGE BASINS

CARRIK COURT FIGURE 6 - 88TH STREET WATER QUALITY

C|P|HCONSULTANTS Site Planning • Civil Engineering Landscape Architecture • Land Use Consulting 11321-B NE 120th Street Kirkland, WA 98034 • (425) 285-2390 101 South Wenatchee Avenue, Suite C: Wenatchee, WA 98801 • (509) 293-773

www.cphconsultants.com

Surface Water Flow Path

SOURCE: STORMWATER NETWORK VIEWER, CITY OF MUKILTEO SURFACE WATER UTILITY.

CARRIK COURT FIGURE 7 - OFFSITE DRAINAGE CONDITIONS

APPENDIX A

NRCS SOILS DATA, INFILTRATION & GEOTECHNICAL REPORT

Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Snohomish County Area, Washington

Carrik Court

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Snohomish County Area, Washington	13
4—Alderwood-Everett gravelly sandy loams, 25 to 70 percent slopes	13
5—Alderwood-Urban land complex, 2 to 8 percent slopes	14
6—Alderwood-Urban land complex, 8 to 15 percent slopes	16
34—Mukilteo muck	17
References	19

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION		
Area of In	terest (AOI)	100	Spoil Area	The soil surveys that comprise your AOI were mapped at		
	Area of Interest (AOI)	٥	Stony Spot	1.24,000.		
Soils	Soil Man Linit Dalygona	Ø	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
		Ŷ	Wet Spot			
~		Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil		
			Special Line Features	line placement. The maps do not show the small areas of		
Special	Point Features Blowout	Water Features		contrasting soils that could have been shown at a more detailed scale.		
	Borrow Pit	\sim	Streams and Canals			
	Clay Spot	Transport	tation	Please rely on the bar scale on each map sheet for map		
衆		+++	Rails	measurements.		
		~	Interstate Highways	Source of Map: Natural Resources Conservation Service		
X	Gravel Pit	~	US Routes	Web Soil Survey URL:		
00	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)		
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator		
Α.	Lava Flow	Backgrou	ind	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
عليه	Marsh or swamp	No.	Aerial Photography	Albers equal-area conic projection, should be used if more		
R	Mine or Quarry			accurate calculations of distance or area are required.		
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as		
0	Perennial Water			of the version date(s) listed below.		
\sim	Rock Outcrop			Soil Survey Area: Snohomish County Area, Washington		
+	Saline Spot			Survey Area Data: Version 23, Aug 31, 2021		
°.°	Sandy Spot			Soil map units are labeled (as space allows) for map scales		
-	Severely Eroded Spot			1:50,000 or larger.		
0	Sinkhole			Date(s) aerial images were photographed. Sep 2, 2018—Sep		
ò	Slide or Slip			25, 2018		
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were		
				compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
4	Alderwood-Everett gravelly sandy loams, 25 to 70 percent slopes	0.6	0.6%
5	Alderwood-Urban land complex, 2 to 8 percent slopes	45.0	47.9%
6 Alderwood-Urban land complex, 8 to 15 percent slopes		47.2	50.3%
34	Mukilteo muck	1.1	1.1%
Totals for Area of Interest		93.9	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Snohomish County Area, Washington

4—Alderwood-Everett gravelly sandy loams, 25 to 70 percent slopes

Map Unit Setting

National map unit symbol: 2hyy Elevation: 50 to 800 feet Mean annual precipitation: 25 to 60 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Alderwood and similar soils: 60 percent Everett and similar soils: 25 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alderwood

Setting

Landform: Till plains Parent material: Basal till

Typical profile

H1 - 0 to 7 inches: gravelly ashy sandy loam *H2 - 7 to 35 inches:* very gravelly ashy sandy loam *H3 - 35 to 60 inches:* gravelly sandy loam

Properties and qualities

Slope: 25 to 70 percent
Depth to restrictive feature: 20 to 40 inches to densic material
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: F002XA004WA - Puget Lowlands Forest Hydric soil rating: No

Description of Everett

Setting

Landform: Plains, terraces Parent material: Glacial outwash

Typical profile

H1 - 0 to 6 inches: gravelly ashy sandy loam *H2 - 6 to 18 inches:* very gravelly ashy sandy loam
H3 - 18 to 60 inches: extremely gravelly sand

Properties and qualities

Slope: 25 to 70 percent
Depth to restrictive feature: 14 to 20 inches to strongly contrasting textural stratification
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: F002XA004WA - Puget Lowlands Forest Hydric soil rating: No

Minor Components

Mckenna

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Norma, undrained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Terric medisaprists, undrained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

5—Alderwood-Urban land complex, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2hz9 Elevation: 50 to 800 feet Mean annual precipitation: 25 to 60 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Alderwood and similar soils: 60 percent Urban land: 25 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alderwood

Setting

Landform: Till plains Parent material: Basal till

Typical profile

H1 - 0 to 7 inches: gravelly ashy sandy loam

H2 - 7 to 35 inches: very gravelly ashy sandy loam

H3 - 35 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: 20 to 40 inches to densic material
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: B Ecological site: F002XA004WA - Puget Lowlands Forest Forage suitability group: Limited Depth Soils (G002XN302WA) Other vegetative classification: Limited Depth Soils (G002XN302WA) Hydric soil rating: No

Minor Components

Norma, undrained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Mckenna

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Terric medisaprists, undrained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

6-Alderwood-Urban land complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2hzn Elevation: 50 to 800 feet Mean annual precipitation: 25 to 60 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Alderwood and similar soils: 60 percent Urban land: 25 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alderwood

Setting

Landform: Till plains Parent material: Basal till

Typical profile

H1 - 0 to 7 inches: gravelly ashy sandy loam

- H2 7 to 35 inches: very gravelly ashy sandy loam
- H3 35 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 20 to 40 inches to densic material
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: B Ecological site: F002XA004WA - Puget Lowlands Forest Forage suitability group: Limited Depth Soils (G002XN302WA) Other vegetative classification: Limited Depth Soils (G002XN302WA) Hydric soil rating: No

Minor Components

Norma, undrained

Percent of map unit: 5 percent Landform: Drainageways Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

34—Mukilteo muck

Map Unit Setting

National map unit symbol: 2hyr Elevation: 0 to 1,000 feet Mean annual precipitation: 40 to 70 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 150 to 250 days Farmland classification: Prime farmland if drained

Map Unit Composition

Mukilteo, drained, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mukilteo, Drained

Setting

Landform: Depressions Parent material: Herbaceous organic material

Typical profile

Oa - 0 to 4 inches: muck *Oe - 4 to 35 inches:* mucky peat *Oe2 - 35 to 54 inches:* mucky peat *H4 - 54 to 60 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very high (about 25.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D *Ecological site:* R002XA003WA - Puget Lowlands Bogs and Fens *Forage suitability group:* Soils with Few Limitations (G002XN502WA) *Other vegetative classification:* Soils with Few Limitations (G002XN502WA) *Hydric soil rating:* Yes

Minor Components

Orcas

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Mukilteo, undrained

Percent of map unit: 5 percent Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

Terric medisaprists, undrained

Percent of map unit: 5 percent Landform: Depressions Other vegetative classification: Wet Soils (G002XN102WA) Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Technical Memorandum

Project: Carrik Court Infiltration Testing Location: Mukilteo Speedway and 88th Street, SW, Mukilteo, WA Job#: WES-20-1 Date: September 22, 2020

Westcott Holding, Inc. 1010 Market Street Kirkland, Washington 98033 Attn: Ryan Appleby

Dear Mr. Appleby:

I am pleased to submit this technical memorandum providing the results of infiltration testing for stormwater infiltration design.

Background

An aerial photograph of the site is shown on Figure 1. The proposed project is located at the corner of Mukilteo Speedway and 88th Street SW in Mukilteo, Washington and covers the following parcels: 00611600013402, 00611600013500, and 00611600013600, with a total area of approximately 10 acres. There are two houses and several small out-buildings on the project site. The northern and southern portions of the site are forested and the central portion of the site is pasture and a gravel parking pad.

Based on the preliminary site plan, the project is expected to include approximately 125 townhomes with 16 live/work units along Mukilteo Speedway.

The purpose of this work was to evaluate the potential for stormwater infiltration and provide preliminary infiltration rates for feasibility assessment.

Topography, Mapped Geology, Slope Hazards, Wetlands

The site is generally sloping to the west with an elevation of approximately 445-450 feet above sea level along the east side and an elevation of approximately 415-420 feet above sea level along the west side.

The geologic map for Mukilteo¹ indicates that the site is mapped as glacial till, a dense mixture of silt sand and gravel that is generally poor for infiltration.

Based on a steep slope assessment conducted for a previous project (not publicly available) there are no slopes steeper than 40 percent on the property and in the immediate vicinity of the property. There are slopes steeper than 40 percent approximately 400 feet west of the site.

A wetland has been identified in the southern portion of the site.

¹ Minard, J.P., 1982, Distribution and Description of Geologic Units in the Mukilteo Quadrangle, Washington, USGS, Miscellaneous Field Studies, MAP MF-1438.

Borings and Testpit Explorations

Earth Solutions NW, LLC conducted borings and test pit explorations on the site. Final results of this work are not yet available but preliminary results were reviewed for this infiltration assessment.

Three borings, ranging in depth from 90 to 135 feet, were completed at the site. All three borings encountered glacial till or other low-permeability soils to the full depth of the explorations. There were no significant permeable soil horizons that were suitable for deep infiltration.

Following the deep explorations, nine test pits were excavated across the site to observe shallow soil and groundwater conditions. Most of these test pits encountered weathered glacial till to a depth of 3-4 feet and unweathered glacial till below the shallow weathered zone. Two test pits excavated just west of the gravel parking area encountered fill soils over glacial till. Some of the test pits were left open for infiltration testing.

Infiltration Testing

Shallow infiltration testing was conducted in six test pits left open during the test pit exploration program. These tests were conducted at locations shown in Figure 1 using the small-scale pilot infiltration test (PIT) method provided in the 2014 Stormwater Management Manual for Western Washington (SMMWW).

Before each infiltration test a soil sample was collected from the bottom of each PIT excavation and delivered to Amtest Laboratory in Redmond, Washington for grainsize analysis. The results are provided in Attachment A and summarized in Table 1. All six samples were well sorted silty sands with 1 to 14 percent gravel and a United States Classification System (USCS) designation of SM.

Location	Depth (ft)	% Gravel	% Sand	% Silt	USCS Class	Coefficient of Uniformity	Moisture Content	Design Infiltration Rate (in./hr)
IT-2	4.0	9	70	21	SM	9.8	12%	0.25
IT-3	4.5	6	69	26	SM	16	10%	0.18
IT-4	4.0	14	61	25	SM	13	10%	0.04
IT-5	4.0	6	63	31	SM	11	11%	0.03
IT-7	4.0	1	73	27	SM	7.0	11%	0.24
IT-9	4.0	5	66	30	SM	11	9%	0.12

Table 1: Summary of Grainsize Analyses and Infiltration Testing Results

The details of the infiltration test procedures and the test data are provided in Attachment B. For very low infiltration tests such as these, it can be difficult to obtain an accurate steady state infiltration rate. Therefore, the falling head infiltration rate is considered more reliable and were used to estimate the design infiltration rates. Note that the falling head infiltration rate declines as the depth of water decreases in the test pit and is always less than the steady state infiltration rate, so using the falling head rate provides an extra factor of safety.

As specified in the SMMWW, the design infiltration rate is determined by multiplying the measured infiltration rate by the total correction factor. The total correction factor was calculated using the

following correction factors:

- Site variability and number of locations tested (Cf_v) = 0.9 (Ecology recommends 0.33-1.0)
- Test Method (Cf_t) = 0.5 (Small-Scale PIT)
- Degree of influent control to prevent siltation and bio-buildup (Cf_m) = 0.9

The total correction factor (CF_t) = $CF_v \times CF_t \times CF_m = 0.4$. The design infiltration rates for each test are summarized in Table 1.

Recommendations

Two of the three infiltration tests in the southern portion of the site (IT-4 and IT-5) provided significantly lower design infiltration rates (0.03 to 0.04 inches/hour) than the remaining test locations, which provided design infiltration rates ranging from 0.12 to 0.25 inches/hour. These lower test results may be associated with the wetland located in the southern portion of the site. Excluding IT-4 and IT-5, the average design infiltration rate is 0.2 inches/hour. For evaluation of dispersed infiltration facilities outside of the southern portion of the site, I recommend using a design rate of 0.2 inches/hour. For the southern portion of the site, I recommend using a design rate of 0.04 inches/hour.

A design rate of 0.2 inches per hour is sufficient for permeable pavement as long as the permeable pavement section is flat or designed with internal check dams to create storage during large storms. This infiltration design rate may be sufficient for infiltration trenches and bioretention swales underlain by a sufficient reservoir of clean crushed drain rock. These facilities should be equipped with overflow pipes to ensure excess water can be conveyed downstream.

Dispersed infiltration in small facilities has been effective at sites underlain by glacial till. During wet periods, when the ground is most saturated, infiltrating stormwater has an opportunity to spread horizontally before infiltrating. Large infiltration facilities provide less opportunity for horizontal spreading and can be less effective in till soils during wet periods. For this reason, we recommend reliance on small dispersed infiltration facilities rather than large centralized infiltration facilities.

Once locations of infiltration facilities have been identified, additional infiltration testing will be necessary to confirm the design infiltration rate. In addition, groundwater mounding analysis may be necessary to evaluate the combined affect of multiple infiltration facilities across the site.

We recommend having Kindred Hydro, Inc. on site during construction to observe the following:

- The base of any excavation for infiltration BMP's: This inspection allows us to confirm that the soils and groundwater conditions are consistent with our expectations and that the bottom of the excavation is free of silt or other contamination that might clog the facility.
- Samples of any aggregate materials used in the construction of the BMPs to confirm that they meet specifications on the plans.
- Placement of materials during construction of the BMP's to ensure that they conform with the design drawings and specifications.

Limitations and Closure

Work for this project was performed and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Westcott Holding, Inc. for specific application to the referenced matter. No other warranty, expressed or implied, is made.

If you have any questions or concerns, please contact the undersigned.

Sincerely,

J Aratt Runde

J. Scott Kindred, PE President Kindred Hydro, Inc. Date: <u>September 22, 2020</u>

Kindred Hydro

Figure 1: Aerial Photograph of the Site and Infiltration Test Locations

Attachment A:

Grain Size Distribution Results

Kindred Hydro

	10.0	IC A 1 (PS.	1 01 2 <i>]</i> . 01 an		Sations		
Project Name		Carrik Court		Carrik Court		Carrik Court	
Sample Name		IT-	2-4.0	IT-3-4.5		IT-4-4.0	
Sample Date		8/24	4/2020	8/24/2020		8/24/2020	
Solids Content (by							
weight) %		g	90%	ç	91%	ç	91%
Water Content (by							
weight) %		1	12%	1	L0%	1	L0%
	Sieve Size	0/ Datainad	Cumulative %	0/ Datainad	Cumulative %	0/ Datainad	Cumulative %
Sieve Size	(mm)	% Retained	Passing	% Retained	Retained	% Retained	Retained
1.5"	38.1	0	100	0	100	0	100
1"	25.4	0	100	0	100	0	100
3/4"	19.05	0	100	0	100	4.4	96
1/2"	12.7	2.4	98	2.9	97	4.2	91
3/8"	9.5	1.3	96	0.5	97	0.7	91
#4	4.75	5.4	91	2.2	94	4.4	86
#10	2	6.8	84	4.4	90	5.1	81
#20	0.85	6.7	77	4.3	86	4.9	76
#40	0.425	15.2	62	15.2	71	13.8	63
#60	0.25	17.5	45	19.5	51	17.5	45
#100	0.15	11.8	33	14.3	37	9.5	36
#140	0.105	9.5	23	8.5	28	8.1	27
#200	0.075	2.7	21	2.6	26	2.1	25
#270	0.053	5.7	15	3.5	22	5.5	20
<#270		15		22.1		19.8	
	% Gravel	9			6	14	
	%Sand	70		69		61	
	% Silt	: 21		26		25	
	USCS Class	s SM		SM		SM	
%	Coarse Gravel	0.0		0.0		32.1	
	% Fine Gravel	100.0		100.0		e	57.9
	% Coarse Sand		9.7	6.4		8.4	
%	Medium Sand	3	31.2	28.3		9	30.7
% Fine Sand		5	59.1	e	55.3	e	51.0
Grain Size at 60% Passing (D60)		C).39	0).31	0).39
Grain Size at 10% Passing (D10)		C	0.04	0.02		0	.030
Coefficient of Uniform	nity (D60/D10)	9.8		16		13	
Desc	ription (USCS)	well-graded, slightly		well-graded, slightly		well-graded, slightly	
		gravelly, silty	y, fine-medium	gravelly, silty, fine-medium		gravelly, silty, fine-medium	
		SAND		SAND		SAND	

Table A-1 (pg. 1 of 2): Grain Size Distributions

Kindred Hydro, Inc.

Project Name		Carrik Court		Carrik Court		Carrik Court	
Sample Name		IT-	5-4.0	IT-7-4.0		IT-9-4.0	
Sample Date		8/24	4/2020	8/24/2020		8/24/2020	
Solids Content (by						·	•
weight) %		9	90%	9	90%	9	92%
Water Content (by							
weight) %		1	11%	1	L1%		9%
	Sieve Size	0/ Detained	Cumulative %	0/ Datainad	Cumulative %	0/ Detained	Cumulative %
Sieve Size	(mm)	% Retained	Retained	% Retained	Retained	% Retained	Retained
1.5"	38.1	0	100	0	100	0	100
1"	25.4	0	100	0	100	0	100
3/4"	19.05	2.6	97	0	100	0	100
1/2"	12.7	0	97	0	100	1.2	99
3/8"	9.5	0.4	97	0	100	0.7	98
#4	4.75	2.6	94	0.6	99	2.6	96
#10	2	4	90	1.2	98	2.8	93
#20	0.85	5.8	85	2.2	96	4.3	88
#40	0.425	10.5	74	4.3	92	12.1	76
#60	0.25	18.7	55	26.2	66	20.2	56
#100	0.15	11.6	44	22.1	43	12.1	44
#140	0.105	9.6	34	12.5	31	10	34
#200	0.075	3.1	31	4	27	4	30
#270	0.053	6.5	25	6.2	21	5.9	24
<#270		24.6		20.7		24.1	
	% Gravel	6			1	5	
	%Sand	63		73		66	
	% Silt	31		27		30	
	USCS Class	s SM		SM		SM	
%	Coarse Gravel	46.4		0.0		0.0	
	% Fine Gravel	53.6		100.0		100.0	
9	% Coarse Sand		6.3	1.7		4.3	
%	% Medium Sand				9.0	2	25.0
% Fine Sand		E	57.9	8	39.4	7	70.7
Grain Size at 60% Passing (D60)		C).28	C).21	C).28
Grain Size at 10%	Passing (D10)	0	.025	0	.030	0	.025
Uniformity Coefficie	ent (D60/D10)		11	7.0			11
Desc	ription (USCS)	well-grad	ded, slightly	well graded, silty, fine		well-graded, very silty,	
		gravelly, ve	ery silty, fine-	SAND, trace gravel		slightly gravelly, fine-	
		mediu	Im SAND	Sind, nace graver		medium SAND	
		medium SAND				inculum SAND	

Table A-1 (pg. 2 of 2): Grain Size Distributions

Attachment B:

Infiltration Testing Procedures and Results

Small-Scale Pilot Infiltration Test Procedure

Infiltration testing was conducted in general accordance with the small-scale pilot infiltration test (PIT) method provided in the 2014 Stormwater Management Manual for Western Washington (SMMWW). Key elements of the PIT methodology, along with any significant deviations from the SWWMM procedures, are provided below:

- The test pits were excavated to a depth of 4.0 to 4.5 feet. This depth was through the weathered glacial till zone and into the unweathered glacial till, which is expected to provide a conservative estimate of infiltration across the site.
- 2) The horizontal surface area of the bottom of the test pits ranged from 13.5 to 16.2 square feet.
- 3) The depth of water in the pit was measured using both a vertical measuring rod marked in inches and tenths of an inch and a pressure transducer. The data shown on the data sheets is based on the transducer data.
- 4) Water was conveyed into the pits using slotted PVC pipe to reduce erosion and disturbance of the bottom soils.
- 5) Due to the very low infiltration rates, it was not possible to measure the flow rate that would maintain a constant water level in the pits (usually less than 0.1 gallons/minute). Instead, the water level was maintained between a depth of approximately 12 and 14 inches by adding water periodically during the pre-soak period. The pre-soak period lasted at least 6 hours.
- 6) Once the pre-soak period was ended, the water level was allowed to fall below 12 inches. The steady-state infiltration rate was assumed to equal the falling head rate approximately one hour after the pre-soak period was complete. Using the falling head rate at the end of the hour was more accurate than adding water at a fixed rate to maintain a constant head for an hour.
- 7) The falling head rate was assumed to equal the falling head rate approximately 60 to 160 minutes after the steady state portion of the test was complete.
- 8) Due to the slow infiltration rates none of the pits were dry when we returned the next day. Therefore, it was not necessary to over-excavate the pits to see if the test water was mounded on a shallow restrictive layer.

The results of each test are provided on the attached datasheets.

Location:	Carrik Ct	IT-2	Corr:	0.060		
Location.	carrix ct.	Ave. Flow	60111	Corr. Head	Cumulative	Infiltration
Date and Time	Time (min.)	(gpm)	Head (ft)	(inch)	Volume (gal)	Rate (inch/hr)
8/25/20 9:14	0.0	3.444	0.076	0.192		
8/25/20 9:15	1.0	3.444	0.106	0.557		
8/25/20 9:16	2.0	3.444	0.149	1.064		
8/25/20 9:17	3.0	3.444	0.179	1.424		
8/25/20 9:18	4.0	3.444	0.207	1.763		
8/25/20 9:19	5.0	3.444	0.233	2.076		
8/25/20 9:20	6.0	3.444	0.257	2.365		
8/25/20 9:21	7.0	3.444	0.280	2.642		
8/25/20 9:22	9.0	3.444	0.304	3 258	31.00	
8/25/20 9:23	10.0	2.857	0.352	3 649	31.00	
8/25/20 9:25	11.0	2.857	0.390	3.958		
8/25/20 9:26	12.0	2.857	0.421	4.333		
8/25/20 9:27	13.0	2.857	0.449	4.664		
8/25/20 9:28	14.0	2.857	0.478	5.018		
8/25/20 9:29	15.0	2.857	0.509	5.384		
8/25/20 9:30	16.0	2.857	0.530	5.638		
8/25/20 9:31	17.0	2.857	0.558	5.970		
8/25/20 9:32	18.0	2.857	0.583	6.277		
8/25/20 9:33	19.0	2.857	0.608	6.850		
8/25/20 9:34	20.0	2.637	0.032	7 147		
8/25/20 9:36	22.0	2.857	0.678	7.421		
8/25/20 9:37	23.0	2.857	0.705	7.734		
8/25/20 9:38	24.0	2.857	0.727	8.008		
8/25/20 9:39	25.0	2.857	0.752	8.304		
8/25/20 9:40	26.0	2.857	0.783	8.677		
8/25/20 9:41	27.0	2.857	0.808	8.981		
8/25/20 9:42	28.0	2.857	0.837	9.318		
8/25/20 9:43	29.0	2.857	0.864	9.652		
8/25/20 9:44	30.0	2.857	0.890	9.955	91.00	
8/25/20 9:45	31.0	5.167	0.915	10.254		
8/25/20 5:40	33.0	5 167	0.943	10.337		
8/25/20 9:48	34.0	5.167	0.994	11.203		
8/25/20 9:49	35.0	5.167	1.018	11.492		
8/25/20 9:50	36.0	5.167	1.044	11.807	122.00	
8/25/20 9:51	37.0	2.832	1.069	12.106		
8/25/20 9:52	38.0	2.832	1.094	12.403		
8/25/20 9:53	39.0	2.832	1.118	12.691		
8/25/20 9:54	40.0	2.832	1.142	12.984		
8/25/20 9:55	41.0	2.832	1.167	13.279	136.16	
8/25/20 9:56	42.0	0.257	1.1/1	13.332		
8/25/20 9:57	43.0	0.257	1.1/2	13.342		
8/25/20 9:58	44.0	0.237	1 164	13.278		
8/25/20 10:00	46.0	0.257	1.160	13,195		
8/25/20 10:01	47.0	0.257	1.157	13.160		
8/25/20 10:02	48.0	0.257	1.153	13.114		
8/25/20 10:03	49.0	0.257	1.151	13.087		
8/25/20 10:04	50.0	0.257	1.148	13.054		
8/25/20 10:05	51.0	0.257	1.146	13.027		
8/25/20 10:06	52.0	0.257	1.143	12.992		
8/25/20 10:07	53.0	0.257	1.140	12.960		
8/25/20 10:08	54.0	0.257	1.138	12.934	1	
8/25/20 10:09	55.0	0.257	1.136	12.907		
8/25/20 10:10	56.0	0.257	1.134	12.884		
8/25/20 10:12	58.0	0.257	1.131	12.846		
8/25/20 10:13	59.0	0.257	1.129	12.823		
8/25/20 10:14	60.0	0.257	1.126	12.793		
8/25/20 10:15	61.0	0.257	1.121	12.737		
8/25/20 10:16	62.0	0.257	1.118	12.698		
8/25/20 10:17	63.0	0.257	1.117	12.688		
8/25/20 10:18	64.0	0.257	1.115	12.664		
8/25/20 10:19	65.0	0.257	1.112	12.620		
8/25/20 10:20	66.0	0.257	1.110	12.600		
8/25/20 10:21	67.0	0.257	1.108	12.571		
8/25/20 10:22	68.0	0.257	1.107	12.562	1	
8/25/20 10:23	69.0	0.257	1.104	12.533		├
8/25/20 10:24 8/25/20 10:25	70.0	0.257	1.102	12.505		
8/25/20 10:26	72 0	0.257	1.099	12.464		
8/25/20 10:27	73.0	0.257	1.098	12.458		
8/25/20 10:28	74.0	0.257	1.096	12.434		
8/25/20 10:29	75.0	0.257	1.093	12.396		

PIT Test Characteristics	
Date of Test	8/25/2020
Depth of Test PIT (ft)	4.0
Test Pit Width (ft)	3.0
Test Pit Length (ft)	5.4
Test Pit Area (sf)	16.2
Totalizer Flow (gal)=	201
End of Constant Head Test (420 min >12 in.) (min.)	460
Constant Head Infiltration Rate (at 460 min.)	0.66
Falling Head Infiltration Rate (at 580 min.)	0.63

Location:	Carrik Ct.	IT-3	Corr:	0.090		
Location.		Ave. Flow		Corr. Head	Cumulative	Infiltration
Date and Time	Time (min.)	(gpm)	Head (ft)	(inch)	Volume (gal)	Rate (inch/hr)
8/24/20 9:08	0.0	2.782	0.076	-0.164		
8/24/20 9:09	1.0	2.782	0.078	-0.144		
8/24/20 9:10	2.0	2.782	0.074	-0.194		
8/24/20 9:11	3.0	2.782	0.075	-0.186		
8/24/20 9:12	4.0	2.782	0.074	-0.190		
8/24/20 9:13	5.0	2.782	0.075	-0.184		
8/24/20 9:14	6.0	2.782	0.075	-0.179		
8/24/20 9:15	7.0	2.782	0.072	-0.214		
8/24/20 9:16	8.0	2.782	0.073	-0.206		
8/24/20 9:17	9.0	2.782	0.073	-0.203		
8/24/20 9:10	11.0	2.782	0.073	-0.208		
8/24/20 9:20	12.0	2.782	0.459	4.432		
8/24/20 9:21	13.0	2.782	0.507	4.999		
8/24/20 9:22	14.0	2.782	0.535	5.341		
8/24/20 9:23	15.0	2.782	0.567	5.724		
8/24/20 9:24	16.0	2.782	0.600	6.119		
8/24/20 9:25	17.0	2.782	0.630	6.480		
8/24/20 9:26	18.0	2.782	0.662	6.858		
8/24/20 9:27	19.0	2.782	0.689	7.187		
8/24/20 9:28	20.0	2.782	0.713	7.478		
8/24/20 9:29	21.0	2.782	0.740	7.805		
8/24/20 9:30	22.0	2.782	0.778	0.200		
8/24/20 9:31	23.0	2.782	0.810	0.042 0.012		
8/24/20 9:32	24.0	2.782	0.871	9 368		
8/24/20 9:34	26.0	2.782	0.901	9.734		
8/24/20 9:35	27.0	2.782	0.925	10.014		
8/24/20 9:36	28.0	2.782	0.954	10.373		
8/24/20 9:37	29.0	2.782	0.985	10.738		
8/24/20 9:38	30.0	2.782	1.014	11.083		
8/24/20 9:39	31.0	2.782	1.042	11.420		
8/24/20 9:40	32.0	2.782	1.063	11.680		
8/24/20 9:41	33.0	2.782	1.090	11.999	91.80	
8/24/20 9:42	34.0	0.222	1.103	12.157		
8/24/20 9:43	35.0	0.222	1.102	12.139		
8/24/20 9:44	36.0	0.222	1.102	12.144		
8/24/20 9:45	37.0	0.222	1.099	12.100		
8/24/20 9:40	39.0	0.222	1.096	12.083		
8/24/20 9:48	40.0	0.222	1.094	12.052		
8/24/20 9:49	41.0	0.222	1.092	12.023		
8/24/20 9:50	42.0	0.222	1.091	12.007		
8/24/20 9:51	43.0	0.222	1.089	11.983		
8/24/20 9:52	44.0	0.222	1.087	11.966		
8/24/20 9:53	45.0	0.222	1.085	11.941		
8/24/20 9:54	46.0	0.222	1.085	11.934		
8/24/20 9:55	47.0	0.222	1.084	11.924		
8/24/20 9:56	48.0	0.222	1.081	11.891		
8/24/20 9:57	49.0	0.222	1.078	11.858		
8/24/20 9:58	50.0	0.222	1.075	11.822		
8/24/20 9:59	52.0	0.222	1.071	11.770		
8/24/20 10:00	52.0	0.222	1 080	11.884		
8/24/20 10:02	54.0	0.222	1.080	11.875		1
8/24/20 10:03	55.0	0.222	1.081	11.891		
8/24/20 10:04	56.0	0.222	1.082	11.902		
8/24/20 10:05	57.0	0.222	1.068	11.737		
8/24/20 10:06	58.0	0.222	1.065	11.699		
8/24/20 10:07	59.0	0.222	1.062	11.664		
8/24/20 10:08	60.0	0.222	1.059	11.627		
8/24/20 10:09	61.0	0.222	1.057	11.609		
8/24/20 10:10	62.0	0.222	1.062	11.662		
8/24/20 10:11	63.0	0.222	1.060	11.645		
8/24/20 10:12	64.0	0.222	1.059	11.032		
o/ 24/ 20 10:13	65.0	0.222	1.05/	11 502	-	
8/24/20 10:14	67.0	0.222	1 055	11.578		
8/24/20 10:16	68.0	0.222	1.053	11.560		
8/24/20 10:17	69.0	0.222	1.053	11.558		İ
8/24/20 10:18	70.0	0.222	1.053	11.555		l
8/24/20 10:19	71.0	0.222	1.052	11.539		
8/24/20 10:20	72.0	0.222	1.041	11.411		
8/24/20 10:21	73.0	0.222	1.041	11.406		
8/24/20 10:22	74.0	0.222	1.039	11.388		

PIT Test Characteristics	
Date of Test	8/24/2020
Depth of Test PIT (ft)	4.5
Test Pit Width (ft)	3.0
Test Pit Length (ft)	4.5
Test Pit Area (sf)	13.5
Totalizer Flow (gal)=	136
End of Constant Head Test (420 min >12 in.) (min.)	520
Constant Head Infiltration Rate (at 520 min.)	0.51
Falling Head Infiltration Rate (at 580 min.)	0.46

Location:	Carrik Ct	IT-4	Corr	-0.050		ĺ
Location.	currix ct.	Ave. Flow	0011.	Corr. Head	Cumulative	Infiltration
Date and Time	Time (min.)	(gpm)	Head (ft)	(inch)	Volume (gal)	Rate (inch/hr)
8/24/20 9:42	0.0	4.313	0.106	1.872	0.00	
8/24/20 9:43	1.0	4.313	0.126	2.112		
8/24/20 9:44	2.0	4.313	0.175	2.700		
8/24/20 9:45	3.0	4.313	0.192	2.904		
8/24/20 9:46	4.0	4.313	0.232	3.384		
8/24/20 9:47	5.0	4.313	0.271	3.852		
8/24/20 9:48	6.0	4.313	0.311	4.332		
8/24/20 9:49	7.0	4.313	0.34	4.680		
8/24/20 9:50	8.0	4.313	0.38	5.160		
8/24/20 9:51	9.0	4.313	0.4	5.400		
8/24/20 9:52	11.0	4.313	0.42	5.040		
8/24/20 9:54	12.0	4.313	0.489	6 468		
8/24/20 9:55	13.0	4.313	0.518	6.816		
8/24/20 9:56	14.0	4.313	0.547	7.164		
8/24/20 9:57	15.0	4.313	0.575	7.500		
8/24/20 9:58	16.0	4.313	0.614	7.968	69.00	
8/24/20 9:59	17.0	2.273	0.632	8.184		
8/24/20 10:00	18.0	2.273	0.672	8.664		
8/24/20 10:01	19.0	2.273	0.702	9.024		
8/24/20 10:02	20.0	2.273	0.724	9.288		
8/24/20 10:03	21.0	2.273	0.755	9.660		
8/24/20 10:04	22.0	2.273	0.786	10.032		
8/24/20 10:05	23.0	2.2/3	0.803	10.230		├
8/24/20 10:00	24.0	2.2/3	0.651	10.972		
8/24/20 10:08	26.0	2.273	0.879	11.148		
8/24/20 10:09	27.0	2.273	0.908	11.496	94.00	ľ
8/24/20 10:10	28.0	0.283	0.904	11.448		
8/24/20 10:11	29.0	0.283	0.904	11.448		
8/24/20 10:12	30.0	0.283	0.904	11.448		
8/24/20 10:13	31.0	0.283	0.904	11.448		
8/24/20 10:14	32.0	0.283	0.904	11.448		
8/24/20 10:15	33.0	0.283	0.904	11.448		
8/24/20 10:16	34.0	0.283	0.905	11.460		
8/24/20 10:17	35.0	0.283	0.906	11.472		
8/24/20 10:18	36.0	0.283	0.907	11.484		
8/24/20 10:19	37.0	0.283	0.908	11.490		
8/24/20 10:20	39.0	0.283	0.889	11.250		
8/24/20 10:22	40.0	0.283	0.89	11.280		
8/24/20 10:23	41.0	0.283	0.89	11.280		
8/24/20 10:24	42.0	0.283	0.891	11.292		
8/24/20 10:25	43.0	0.283	0.885	11.220		
8/24/20 10:26	44.0	0.283	0.885	11.220		
8/24/20 10:27	45.0	0.283	0.885	11.220		
8/24/20 10:28	46.0	0.283	0.885	11.220		
8/24/20 10:29	47.0	0.283	0.885	11.220		
8/24/20 10:30	48.0	0.283	0.8/7	11.124	1	
8/24/20 10:31	49.0 50.0	0.283	0.886	11 232		
8/24/20 10:33	51.0	0.283	0.876	11.112		
8/24/20 10:34	52,0	0.283	0.876	11.112		
8/24/20 10:35	53.0	0.283	0.877	11.124		i t
8/24/20 10:36	54.0	0.283	0.887	11.244		
8/24/20 10:37	55.0	0.283	0.887	11.244		
8/24/20 10:38	56.0	0.283	0.888	11.256		
8/24/20 10:39	57.0	0.283	0.878	11.136		
8/24/20 10:40	58.0	0.283	0.875	11.100		
8/24/20 10:41	59.0	0.283	0.885	11.220		
8/24/20 10:42	60.0	0.283	0.875	11.100		<u>├</u> ────┤
8/24/20 10:43	61.0	0.283	0.874	11.088		
8/24/20 10:44	62.0	0.283	0.874	11 244		
8/24/20 10:45	64.0	0.283	0.887	11.244		
8/24/20 10:40	65.0	0.283	0.887	11.244		
8/24/20 10:48	66.0	0.283	0.876	11.112		i l
8/24/20 10:49	67.0	0.283	0.876	11.112		
8/24/20 10:50	68.0	0.283	0.879	11.148		
8/24/20 10:51	69.0	0.283	0.878	11.136		
8/24/20 10:52	70.0	0.283	0.907	11.484		
8/24/20 10:53	71.0	0.283	0.927	11.724		<u> </u>
8/24/20 10:54	72.0	0.283	0.955	12.060		

	0/24/2020
Date of Test	8/24/2020
Depth of Test PIT (ft)	4.5
Test Pit Width (ft)	3.0
Test Pit Length (ft)	4.5
Test Pit Area (sf)	13.5
Totalizer Flow (gal)=	120
End of Constant Head Test (420 min >12 in.) (min.)	490
Constant Head Infiltration Rate (at 490 min.)	0.16
Falling Head Infiltration Rate (at 650 min.)	0.10

Location:	Carrik Ct	IT-5	Corr:	-0.100		
Location.	carrix ct.		0011.	Corr Head	Cumulative	Infiltration
Date and Time	Time (min.)	(gpm)	Head (ft)	(inch)	Volume (gal)	Rate (inch/hr)
8/24/20 10:16	0.0	3,550	0.000	1.200	0.00	nate (meny my
8/24/20 10:17	1.0	3.550	0.040	1.680		
8/24/20 10:18	2.0	3.550	0.090	2.280		
8/24/20 10:19	3.0	3.550	0.131	2.772		
8/24/20 10:20	4.0	3.550	0.170	3.240		
8/24/20 10:21	5.0	3.550	0.210	3.720		
8/24/20 10:22	6.0	3.550	0.241	4.092		
8/24/20 10:23	7.0	3.550	0.280	4.560		
8/24/20 10:24	8.0	3.550	0.311	4.932		
8/24/20 10:25	9.0	3.550	0.344	5.328		
8/24/20 10:26	10.0	3.550	0.373	5.070		
8/24/20 10:27	11.0	3.550	0.413	6 504		r
8/24/20 10:29	13.0	3.550	0.472	6.864		
8/24/20 10:30	14.0	3.550	0.503	7.236	59.00	
8/24/20 10:31	15.0	3.550	0.533	7.596		
8/24/20 10:32	16.0	3.550	0.562	7.944		
8/24/20 10:33	17.0	3.550	0.601	8.412		
8/24/20 10:34	18.0	3.550	0.630	8.760		
8/24/20 10:35	19.0	3.550	0.661	9.132		
8/24/20 10:36	20.0	3.550	0.690	9.480		
8/24/20 10:37	21.0	3.550	0.720	9.840		<u>├</u> ────┤
8/24/20 10:38	22.0	3.550	0.750	10.200		
8/24/20 10:39	23.0	3.550	0.780	10.560	8E 20	
8/24/20 10:40	24.0	3.550	0.800	10.872	65.20	
8/24/20 10:41	25.0	0.277	0.010	10.992		
8/24/20 10:42	27.0	0.277	0.815	10.980		
8/24/20 10:44	28.0	0.277	0.815	10.980		
8/24/20 10:45	29.0	0.277	0.818	11.016		
8/24/20 10:46	30.0	0.277	0.818	11.016		
8/24/20 10:47	31.0	0.277	0.818	11.016		
8/24/20 10:48	32.0	0.277	0.817	11.004		
8/24/20 10:49	33.0	0.277	0.817	11.004		
8/24/20 10:50	34.0	0.277	0.810	10.920		
8/24/20 10:51	35.0	0.277	0.809	10.908		
8/24/2010:52	36.0	0.277	0.808	10.896		
8/24/20 10:55	37.0	0.277	0.808	10.890		
8/24/20 10:55	39.0	0.277	0.814	10.968		
8/24/20 10:56	40.0	0.277	0.813	10.956		ľ
8/24/20 10:57	41.0	0.277	0.813	10.956		
8/24/20 10:58	42.0	0.277	0.813	10.956		
8/24/20 10:59	43.0	0.277	0.813	10.956		
8/24/20 11:00	44.0	0.277	0.815	10.980		
8/24/20 11:01	45.0	0.277	0.815	10.980		
8/24/20 11:02	46.0	0.277	0.815	10.980		
8/24/20 11:03	47.0	0.277	0.815	10.980		
8/24/20 11:04	48.0	0.277	0.815	10.980		
8/24/20 11:05	49.0	0.277	0.814	10.968		
8/24/20 11:00	51.0	0.277	0.814	10.968		
8/24/20 11:08	52.0	0.277	0.813	10.956		i l
8/24/20 11:09	53.0	0.277	0.813	10.956		i t
8/24/20 11:10	54.0	0.277	0.816	10.992		
8/24/20 11:11	55.0	0.277	0.816	10.992		
8/24/20 11:12	56.0	0.277	0.816	10.992		
8/24/20 11:13	57.0	0.277	0.817	11.004		
8/24/20 11:14	58.0	0.277	0.817	11.004		
8/24/20 11:15	59.0	0.277	0.815	10.980		
8/24/20 11:16	60.0	0.277	0.835	11.220		
8/24/2011:17	61.0	0.277	0.865	12.049		
0/24/2011:18 8/24/2011:10	62.0	0.277	0.904	12.048	96.01	├
8/24/20 11:19	64.0	0.277	0.914	12.100	50.01	
8/24/20 11:21	65.0	0.008	0.914	12.168	-	
8/24/20 11:22	66.0	0.008	0.914	12.168		i l
8/24/20 11:23	67.0	0.008	0.914	12.168		
8/24/20 11:24	68.0	0.008	0.913	12.156		
8/24/20 11:25	69.0	0.008	0.915	12.180		
8/24/20 11:26	70.0	0.008	0.915	12.180		
8/24/20 11:27	71.0	0.008	0.915	12.180		
8/24/20 11:28	72.0	0.008	0.915	12.180		
8/24/20 11:29	73.0	0.008	0.916	12.192		
8/24/20 11:30	74.0	0.008	0.914	12.168		

PIT Test Characteristics	
Date of Test	8/24/2020
Depth of Test PIT (ft)	4.5
Test Pit Width (ft)	3.0
Test Pit Length (ft)	4.5
Test Pit Area (sf)	13.5
Totalizer Flow (gal)=	98
End of Constant Head Test (420 min >12 in.) (min.)	482
Constant Head Infiltration Rate (at 500 min.)	0.07
Falling Head Infiltration Rate (at 620 min.)	0.07

Location:	Carrik Ct.	IT-7	Corr:	-0.250		
Location.	curric cu	Ave. Flow	60111	Corr. Head	Cumulative	Infiltration
Date and Time	Time (min.)	(gpm)	Head (ft)	(inch)	Volume (gal)	Rate (inch/hr)
8/25/20 8:58	0.0	4.208	0.043	3.516	0.00	
8/25/20 8:59	1.0	4.208	0.091	4.092		
8/25/20 9:00	2.0	4.208	0.145	4.740		
8/25/20 9:01	3.0	4.208	0.185	5.220		
8/25/20 9:02	4.0	4.208	0.223	5.676		
8/25/20 9:03	5.0	4.208	0.262	6.144		
8/25/20 9:04	6.0	4.208	0.302	6.624		-
8/25/20 9:05	7.0	4.208	0.343	7.116		
8/25/20 9:06	8.0	4.208	0.382	7.584		
8/25/20 9:07	9.0	4.208	0.412	9 424		ł
8/25/20 9:08	11.0	4.208	0.432	8 784		
8/25/20 9:10	12.0	4.208	0.52	9,240		1
8/25/20 9:11	13.0	4.208	0.55	9.600		
8/25/20 9:12	14.0	4.208	0.579	9.948		
8/25/20 9:13	15.0	4.208	0.609	10.308		
8/25/20 9:14	16.0	4.208	0.627	10.524		
8/25/20 9:15	17.0	4.208	0.648	10.776		
8/25/20 9:16	18.0	4.208	0.678	11.136		
8/25/20 9:17	19.0	4.208	0.697	11.364		
8/25/20 9:18	20.0	4.208	0.717	11.604		
8/25/20 9:19	21.0	4.208	0.737	11.844		<u> </u>
8/25/20 9:20	22.0	4.208	0.757	12.084		
8/25/20 9:21	23.0	4.208	0.777	12.324	101.00	ł
8/25/20 9:22	24.0	4.208	0.798	12.576	101.00	
8/25/20 9:24	26.0	0.460	0.798	12.576		1
8/25/20 9:25	27.0	0.460	0.795	12.540		1
8/25/20 9:26	28.0	0.460	0.786	12.432		
8/25/20 9:27	29.0	0.460	0.787	12.444		
8/25/20 9:28	30.0	0.460	0.787	12.444		
8/25/20 9:29	31.0	0.460	0.788	12.456		
8/25/20 9:30	32.0	0.460	0.782	12.384		
8/25/20 9:31	33.0	0.460	0.772	12.264		
8/25/20 9:32	34.0	0.460	0.773	12.276		
8/25/20 9:33	35.0	0.460	0.773	12.276		
8/25/20 9:34	36.0	0.460	0.773	12.276		
8/25/20 9:35	37.0	0.460	0.771	12.252		1
8/25/20 9:30	39.0	0.400	0.701	12.132		
8/25/20 9:38	40.0	0.460	0.761	12.132		
8/25/20 9:39	41.0	0.460	0.761	12.132		
8/25/20 9:40	42.0	0.460	0.751	12.012		
8/25/20 9:41	43.0	0.460	0.761	12.132		
8/25/20 9:42	44.0	0.460	0.751	12.012		
8/25/20 9:43	45.0	0.460	0.751	12.012		
8/25/20 9:44	46.0	0.460	0.751	12.012		
8/25/20 9:45	47.0	0.460	0.75	12.000		
8/25/20 9:46	48.0	0.460	0.75	12.000		-
8/25/20 9:47	49.0	0.460	0.741	11.892		
8/25/20 9:48	50.0	0.460	0.741	11.892		<u> </u>
8/25/20 9:49	51.0	0.460	0.74	11.880		ł
8/25/20 9:50	52.0	0.400	0.742	11 904		t
8/25/20 9:52	54.0	0.460	0.742	11.904		t
8/25/20 9:53	55.0	0.460	0.732	11.784		t
8/25/20 9:54	56.0	0.460	0.732	11.784		1
8/25/20 9:55	57.0	0.460	0.732	11.784		
8/25/20 9:56	58.0	0.460	0.732	11.784		
8/25/20 9:57	59.0	0.460	0.733	11.796		
8/25/20 9:58	60.0	0.460	0.733	11.796		
8/25/20 9:59	61.0	0.460	0.733	11.796		
8/25/20 10:00	62.0	0.460	0.732	11.784		
8/25/20 10:01	63.0	0.460	0.732	11.784		l
8/25/20 10:02	64.0	0.460	0.722	11.664		
8/25/20 10:03	65.0	0.460	0.722	11.664		<u> </u>
8/25/20 10:04	66.0	0.460	0.722	11.664		ł
8/25/20 10:05	62.0	0.460	0.721	11.052	-	ł
8/25/20 10:00	69.0	0.460	0.722	11.784		t
8/25/20 10:07	70.0	0.400	0.732	12.252		<u> </u>
8/25/20 10:09	71.0	0.460	0.801	12.612		t
8/25/20 10:10	72.0	0.460	0.829	12.948		t
8/25/20 10:11	73.0	0.460	0.869	13.428		1
8/25/20 10:12	74.0	0.460	0.898	13.776	124.00	T

Date of Test	8/25/2020
Depth of Test PIT (ft)	4.0
Test Pit Width (ft)	3.0
Test Pit Length (ft)	5.3
Test Pit Area (sf)	15.9
Totalizer Flow (gal)=	170
End of Constant Head Test (420 min >12 in.) (min.)	480
Constant Head Infiltration Rate (at 480 min.)	0.68
Falling Head Infiltration Rate (at 600 min.)	0.61

Location:	Carrik Ct	IT-9	Corr	0 130		T
Location.	carrie cu	Ave. Flow		Corr. Head	Cumulative	Infiltration
Date and Time	Time (min.)	(gpm)	Head (ft)	(inch)	Volume (gal)	Rate (inch/hr)
8/25/20 9:17	0.0	6.739	-0.001	-1.572	0.00	
8/25/20 9:18	1.0	6.739	0.067	-0.756		
8/25/20 9:19	2.0	6.739	0.136	0.072		
8/25/20 9:20	3.0	6.739	0.206	0.912		
8/25/20 9:21	4.0	6.739	0.255	1.500		
8/25/20 9:22	5.0	6.739	0.316	2.232		
8/25/20 9:23	6.0	6.739	0.375	2.940		
8/25/20 9:24	7.0	6.739	0.434	3.648		
8/25/20 9:25	0.8	6.739	0.5	5.040		
8/25/20 9:20	10.0	6 739	0.55	5.760	79.00	
8/25/20 9:28	11.0	6.739	0.669	6.468	75.00	
8/25/20 9:29	12.0	6.739	0.729	7.188		
8/25/20 9:30	13.0	6.739	0.772	7.704		
8/25/20 9:31	14.0	6.739	0.831	8.412		
8/25/20 9:32	15.0	6.739	0.881	9.012	108.20	
8/25/20 9:33	16.0	6.739	0.931	9.612		
8/25/20 9:34	17.0	6.739	0.98	10.200		
8/25/20 9:35	18.0	6.739	1.027	10.764		
8/25/20 9:36	19.0	6.739	1.076	11.352		
8/25/20 9:37	20.0	6.739	1.125	11.940		
8/25/20 9:38	21.0	6.739	1.185	12.000	1/19 25	
8/25/20 9:39	22.0	0.739	1.224	13.008	140.25	
8/25/20 9:40	23.0	0.082	1.214	13.008		
8/25/20 9:42	25.0	0.082	1.214	13.008		
8/25/20 9:43	26.0	0.082	1.214	13.008		
8/25/20 9:44	27.0	0.082	1.214	13.008		
8/25/20 9:45	28.0	0.082	1.213	12.996		
8/25/20 9:46	29.0	0.082	1.213	12.996		
8/25/20 9:47	30.0	0.082	1.213	12.996		
8/25/20 9:48	31.0	0.082	1.213	12.996		
8/25/20 9:49	32.0	0.082	1.202	12.864		
8/25/20 9:50	33.0	0.082	1.204	12.888		
8/25/20 9:51	34.0	0.082	1.204	12.888		
8/25/20 9:52	35.0	0.082	1.204	12.000		
8/25/20 9:54	37.0	0.082	1.204	12.888		
8/25/20 9:55	38.0	0.082	1.204	12.888		
8/25/20 9:56	39.0	0.082	1.204	12.888		
8/25/20 9:57	40.0	0.082	1.195	12.780		
8/25/20 9:58	41.0	0.082	1.195	12.780		
8/25/20 9:59	42.0	0.082	1.205	12.900		
8/25/20 10:00	43.0	0.082	1.204	12.888		
8/25/20 10:01	44.0	0.082	1.194	12.768		
8/25/20 10:02	45.0	0.082	1.194	12.768		
8/25/20 10:03	46.0	0.082	1.194	12.768		
8/25/20 10:04	47.0	0.082	1 193	12.708		
8/25/20 10:06	49.0	0.082	1.193	12.768		
8/25/20 10:07	50.0	0.082	1.194	12.768		
8/25/20 10:08	51.0	0.082	1.194	12.768		
8/25/20 10:09	52.0	0.082	1.194	12.768		
8/25/20 10:10	53.0	0.082	1.193	12.756		
8/25/20 10:11	54.0	0.082	1.193	12.756		
8/25/20 10:12	55.0	0.082	1.193	12.756		
8/25/20 10:13	56.0	0.082	1.185	12.660		
8/25/20 10:14	57.0	0.082	1.185	12.660		
8/25/20 10:15	58.0	0.082	1.182	12.624		┨─────┨
8/25/20 10:10	59.0 60.0	0.082	1.102	12.024		
8/25/20 10:18	61.0	0.082	1.182	12.624		
8/25/20 10:19	62.0	0.082	1.182	12.624		
8/25/20 10:20	63.0	0.082	1.182	12.624		
8/25/20 10:21	64.0	0.082	1.182	12.624		
8/25/20 10:22	65.0	0.082	1.182	12.624		
8/25/20 10:23	66.0	0.082	1.182	12.624		
8/25/20 10:24	67.0	0.082	1.182	12.624		ļ]
8/25/20 10:25	68.0	0.082	1.181	12.612		ļļ
8/25/20 10:26	69.0	0.082	1.181	12.612		├ ──── ↓
8/25/20 10:27	70.0	0.082	1.181	12.612		├────┤
8/25/20 10:28	71.0	0.082	1.181	12.612		┟────┤
8/25/20 10:29	72.0	0.082	1.181	12.012		┟───┤
8/25/20 10:30	73.0	0.082	1.101	12.012		
0, 20,20 10.31	/4.0	0.082	1.1/2	12.304		

Date of Test	8/25/2020
Depth of Test PIT (ft)	4.0
Test Pit Width (ft)	3.0
Test Pit Length (ft)	5.0
Test Pit Area (sf)	15.0
Totalizer Flow (gal)=	173
End of Constant Head Test (420 min >12 in.) (min.)	440
Constant Head Infiltration Rate (at 480 min.)	0.39
Falling Head Infiltration Rate (at 600 min.)	0.30

Geotechnical Engineering Construction Observation/Testing Environmental Services

> GEOTECHNICAL ENGINEERING STUDY PROPOSED MUKILTEO STRICKLAND MULTI-FAMILY DEVELOPMENT MUKILTEO, WASHINGTON

> > ES-7422

15365 N.E. 90th Street, Suite 100 Redmond, WA 98052 (425) 449-4704 Fax (425) 449-4711 www.carthsolutionsnw.com

PREPARED FOR

WESTCOTT HOLDINGS, INC.

September 15, 2020 Updated October 12, 2020

Scott S. Riegel, L.G., L.E.G. Senior Project Manager

Kyle R. Campbell, P.E. Principal Engineer

GEOTECHNICAL ENGINEERING STUDY PROPOSED MUKILTEO STRICKLAND MULTI-FAMILY DEVELOPMENT MUKILTEO, WASHINGTON

ES-7422

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are <u>not</u> building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

September 15, 2020 Updated October 12, 2020 ES-7422

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Westcott Holdings, Inc. 1010 Market Street Kirkland, Washington 98033

Attention: Mr. Ryan Appleby

Dear Mr. Appleby:

Earth Solutions NW, LLC (ESNW) is pleased to present this report supporting the planned multifamily development for Mukilteo, Washington. Based on the results of our study, in our opinion, the proposed residential development is feasible from a geotechnical standpoint. In general, the subject property is underlain by medium dense to dense glacial till deposits and isolated areas of fill. Fill encountered on this site is not suitable for direct foundation support due to high organic and debris levels. The proposed structures may be supported on competent native soil or new structural fill placed directly on competent native soil. We anticipate competent native soil, capable of providing adequate foundation support, to be encountered at depths of about two to three feet bgs across a majority of the site where fill is not present. The condition of the existing fill should be evaluated by ESNW during grading operations but in most areas encountered, in its current condition is not suitable for direct support of foundations and must be removed beneath foundations.

Geotechnical recommendations related to the proposed site development are provided in this geotechnical engineering study. If you have any questions regarding the content of this study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Scott S. Riegel, L.G., L.E.G. Senior Project Manager

Table of Contents

ES-7422

<u>PAGE</u>

INTRODUCTION	1
General	1
Project Description	2
<u></u>	
SITE CONDITIONS	2
Surface	2
Subsurface	3
Topsoil and Fill	3
Native Soil	3
Geologic Setting	4
Groundwater	4
<u>Goologic Hazard Areas Assessment</u>	1
Geologic Hazard Aleas Assessment	4
DISCUSSION AND RECOMMENDATIONS	5
General	5
Site Preparation and Earthwork	5
Temporary Fresion Control	5
Stripping	5
Surpping	6
In-situ and imported Solis	0
	0
	<u> </u>
Foundations	7
<u>Seismic Design</u>	8
Slab-on-Grade Floors	8
Retaining Walls	8
Drainage	9
Infiltration Feasibility	9
On-site Stormwater Management	9
Excavations and Slopes	11
Preliminary Pavement Sections	11
Itility Support and Trench Backfill	12
	12
	12
LIMITATIONS.	10
AUUITIONAL SERVICES	13

Table of Contents

Cont'd

ES-7422

GRAPHICS

Plate 1	Vicinity Map
Plate 2	Subsurface Exploration Plan
Plate 3	Retaining Wall Drainage Detail
Plate 4	Footing Drain Detail
APPENDICES	
Appendix A	Subsurface Exploration Boring and Test Pit Logs

Appendix B Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY PROPOSED MUKILTEO STRICKLAND MULTI-FAMILY DEVELOPMENT MUKILTEO, WASHINGTON

ES-7422

INTRODUCTION

<u>General</u>

This geotechnical engineering study (study) was prepared for the proposed multi-family residential development to be completed along the west side of Mukilteo Speedway, just north of the intersection with 88th Street Southwest in Mukilteo, Washington. The purpose of this study was to provide geotechnical recommendations for currently proposed development plans. Our scope of services for completing this study included the following:

- Completing borings and test pits for purposes of characterizing site soils;
- Completing laboratory testing of soil samples collected at the test pit locations;
- Conducting engineering analyses, and;
- Preparation of this report.

The following documents and maps were reviewed as part of our study preparation:

- Strickland Site Plan Study, prepared by CP|H Consultants, dated June 20, 2020;
- Snohomish County Liquefaction Susceptibility, endorsed by the Washington State Department of Natural Resources, dated October 2009;
- Chapter 17.52A Geologic Sensitive Areas Regulations of the Mukilteo Municipal Code (MMC);
- Title 30.63A of the Snohomish County Drainage Manual (SCDM);
- Geologic Map of the Mukilteo Quadrangle 1:24,000-scale, Washington, by James P. Minard, 1985, and;
- Online Web Soil Survey (WSS) resource, provided by the United States Department of Agriculture (USDA), Natural Resources Conservation Service.

Project Description

The preliminary site layout indicates a multi-family residential development comprised of about 114 townhome residences, general infrastructure improvements and stormwater facilities. At the time of report submission, specific building load and grading plans were not available for review; however, based on our experience with similar developments, the proposed structures will likely be three to four stories in height and constructed utilizing relatively lightly-loaded wood framing supported on conventional foundations. Perimeter footing loads will likely be 2 to 3 kips per lineal foot (klf). Slab-on-grade loading is anticipated to be approximately 150 pounds per square foot (psf). Retaining walls and/or rockeries may be utilized in some areas to accommodate grade transitions, where necessary. Stormwater will likely be managed using conventional detention, with limited to low impact development (LID) infiltration elements incorporated to the extent feasible.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review final designs to confirm that our geotechnical recommendations been incorporated into the plans.

SITE CONDITIONS

<u>Surface</u>

The subject site is located in the northwestern corner of the intersection between Mukilteo Speedway and 88th Street Southwest in Mukilteo, Washington. The approximate location of the property is illustrated on Plate 1 (Vicinity Map). The property is comprised of three adjoined tax parcels (Snohomish County Parcel Nos. 00611600013-402, -500 & -600) totaling about 9.6 acres.

The site is bordered to the north and west by developed parcels, to the south by 88th Street Southwest and to the east by Mukilteo Speedway. Two residential buildings and associated outbuildings occupy the site but will be removed as part of the redevelopment plans. In general, site topography descends toward the west with total topographic change of about 40 feet at a gradient of about 10 percent or less.

Subsurface

A representative of ESNW observed, logged, and sampled three borings and 10 test pits, advanced at accessible locations within the property boundaries. Borings were completed on August 4 through 8, 2020 using a sonic drill rig and the test pits were excavated on August 21, 2020 using a trackhoe and operator retained by our firm. The borings were focused on deep infiltration feasibility while the test pits were completed for purposes of assessment and classification of site soils as well as characterization of groundwater conditions within areas proposed for new development. The approximate locations of the borings and test pits are depicted on Plate 2 (Subsurface Exploration Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were evaluated in accordance with both Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures. We did not collect samples of the soil borings; however, completed visual classifications of the soils extracted by the drill rig.

A hydrogeologic consultant (Kindred Hydro) was contracted by the client to log, sample and evaluate the boring locations as part of a separate deep infiltration feasibility study.

Topsoil and Fill

Topsoil was encountered generally within the upper 8 to 12 inches of existing grades at the test pit locations. The topsoil was characterized by light brown color, the presence of fine organic material, and small root intrusions. In general, forested areas will likely require a deeper stripping depth than areas where grass yards are currently located.

Fill was encountered at test pit locations TP-1, TP-8, and TP-10 extending to depths of approximately 11, 16 and 3 feet bgs, respectively. The fill was variable and was characterized as silty sand with gravel, and silty gravel (USCS: SM), and was encountered in a loose to medium dense and moist condition. Scattered roots and wood fragments, bricks, and asphalt were observed within the fill. The condition of the existing fill must be evaluated by ESNW during grading operations. The existing fill in its current condition is not suitable for direct support of foundations and must be removed beneath foundations.

Native Soil

Underlying topsoil and fill, native soils consisted primarily of medium dense to very dense, silty sand with gravel (USCS: SM). The maximum exploration depth was approximately 137.5 feet bgs.

Geologic Setting

The referenced geologic map resource identifies Vashon glacial till (Qvt) across the site. Vashon advance outwash is mapped just east of the subject property. As reported on the geologic map resource, Vashon subglacial till consists primarily of a nonsorted mixture of silt, sand, and subrounded to well-rounded gravels, commonly referred to as "hardpan." The till was deposited directly from the glacier as it advanced over bedrock and older Quaternary sediment. Vashon advance outwash consists primarily of well stratified, unconsolidated sand with pebbles and some cobbles. The composition of the deposit in this area is noted to be similar to that of recessional outwash and was deposited as bar and channel sediment in and along meltwater streams flowing from the advancing Vashon glacier.

The referenced WSS resource identifies Alderwood-Urban land complex (Map Unit Symbol: 5) and Alderwood gravelly sandy loam (Map Unit Symbol: 3) as the primary soil units underlying the subject site. The Alderwood series soils were formed in glacial till plains and are typically deposited as hills and ridges. The Alderwood-Urban land complex series soils are associated with large-scale urban grading.

Based on our field observations, the on site native soils generally correlate with glacial till deposits.

<u>Groundwater</u>

During our subsurface exploration completed in August 2020, groundwater seepage was encountered within isolated zones within boring location B-1. Oxide staining was noted in some of the native glacial till zones in the test pits. As such, it is our opinion the contractor should anticipate, and be prepared to respond to, zones of perched groundwater seepage during construction, especially within excavations required for utility installations and stormwater facilities (where necessary). Temporary measures to control surface water runoff and groundwater during construction would likely involve passive elements such as interceptor trenches, sumps, and dewatering pumps. Seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter months.

Geologic Hazard Areas Assessment

Based on our review of Title 17.52A, the site does not include geologically hazardous areas. Standard development practices are applicable to the proposed development.

DISCUSSION AND RECOMMENDATIONS

<u>General</u>

Based on the results of our investigation, construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed development include foundation support, slab-on-grade subgrade support, the suitability of using native soils as structural fill, installation of site utilities, and construction of stormwater management facilities.

In our opinion, the proposed structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, or new structural fill placed directly on competent native soil. In general, competent native soil, suitable for support of new foundations, will likely be encountered at depths of about two to three feet bgs across a majority of the site except where existing fill is present. The condition of the existing fill must be evaluated by ESNW during grading operations. The existing fill in its current condition is not suitable for direct support of foundations and must be removed beneath foundations.

This study has been prepared for the exclusive use of the Westcott Holdings, Inc. and their representatives. No warranty, expressed or implied, is made. This study has been prepared in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession currently practicing under similar conditions in this area.

Site Preparation and Earthwork

Initial site preparation activities will consist of installing temporary erosion control measures, establishing grading limits, and performing site clearing and site stripping (as necessary). Subsequent earthwork will involve mass grading and related infrastructure improvements.

Temporary Erosion Control

Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered in order to both minimize off-site soil tracking and provide a stable access surface for construction vehicles. Geotextile fabric may be placed below the quarry spalls for greater stability of the temporary construction entrance. Erosion control measures should consist of silt fencing placed around appropriate portions of the site perimeter. Soil stockpiles should be covered or otherwise protected to reduce the potential for soil erosion during periods of wet weather. Temporary approaches for controlling surface water runoff should be established prior to beginning earthwork activities. Additional Best Management Practices (BMPs), as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities, as necessary.

Stripping

Topsoil and transitional mineral-like deposits was encountered generally within the upper 8 to 12 inches of existing grades at test pit locations. For preliminary planning purposes, topsoil-stripping depths of about four to six inches bgs should be considered but may be deeper in forested areas. The material remaining immediately below the topsoil may have some root zones and will likely be variable in composition, density, and/or moisture content. The material exposed after initial topsoil stripping will likely not be suitable for direct structural support as is and will likely need to be compacted in place or stripped and stockpiled for reuse as fill; depending on the time of year stripping occurs, the soil exposed below the topsoil may be too wet to compact and may need to be aerated or treated. ESNW should observe initial stripping activities to provide recommendations regarding stripping depths and material suitability.

ESNW will coordinate with the owner and contractor(s), as necessary, to utilize on site soils to the extent feasible. Over-stripping should be avoided, as it is unnecessary and may result in increased project development costs.

In-situ and Imported Soils

On-site soils are highly moisture sensitive, and successful use as structural fill will largely be dictated by the moisture content at the time of placement and compaction. Remedial measures, such as soil aeration and/or cement treatment (where allowed by the local jurisdiction or utility district), may be necessary as part of site grading and earthwork activities. If the on-site soils cannot be successfully compacted, the use of an imported soil may be necessary. In our opinion, a contingency should be provided in the project budget for export of soil that cannot be successfully compacted as structural fill (due to over-optimum moisture content) if grading activities take place during periods of extended rainfall activity. Soils with fines contents greater than 5 percent typically degrade rapidly when exposed to periods of rainfall.

Imported soil intended for use as structural fill should consist of a well-graded, granular soil with a moisture content that is at (or slightly above) the optimum level. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Subgrade Preparation

Soil conditions anticipated at proposed foundation subgrade elevations will likely expose very loose to medium dense, fill and dense native soils. The larger area of fill is located in the east-central portion of the property which contained abundant debris and organics and extended to depths of up to about 16 feet below existing grades. Because of the variability in soil type and relative density between the existing fill soils, potential differential settlement should be mitigated by removal of the existing fill. The existing fill in its current condition is not suitable for support of foundations and must be removed beneath foundations.
Westcott Holdings, Inc. September 15, 2020 Updated October 12, 2020

Foundation and slab subgrade surfaces should be compacted in-situ to a minimum depth of one foot below the design subgrade elevation. Uniform compaction of the foundation and slab subgrade areas will establish a relatively consistent subgrade condition below the foundation and slab elements. ESNW should observe the compacted subgrade areas prior to placing formwork. Supplementary recommendations for subgrade improvement may be provided at the time of construction; such recommendations would likely include further mechanical compaction effort and/or overexcavation and replacement with suitable structural fill.

Structural Fill

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, and roadway areas. Fill placed to construct permanent slopes and throughout retaining wall and utility trench backfill areas is considered structural fill as well. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). For soil placed in utility trenches underlying structural areas, compaction requirements are dictated by the local city, county, or utility district, and are typically specified to a relative compaction of at least 95 percent.

Foundations

In our opinion, the proposed structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, or new structural fill placed directly on a competent native soil subgrade. In general, competent native soil, suitable for support of new foundations, should be encountered at depths of about two to three feet below existing grades, except areas where existing fill is located. Loose or unsuitable soil conditions exposed at foundation subgrade elevations should be compacted to the specifications of structural fill or overexcavation and replaced with a suitable structural fill. Organic-rich material encountered at structural subgrade elevations should be removed, and grades should be restored with structural fill.

Provided the foundations will be supported as described above, the following parameters may be used for design:

•	Allowable soil bearing capacity	2,500 psf
•	Passive earth pressure	300 pcf (equivalent fluid)
•	Coefficient of friction	0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factorof-safety of 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. The majority of the settlements should occur during construction, as dead loads are applied.

Seismic Design

The 2015 International Building Code recognizes the American Society of Civil Engineers (ASCE) for seismic site class definitions. In accordance with Table 20.3-1 of the ASCE Minimum Design Loads for Buildings and Other Structures manual, Site Class C should be used for design.

Liquefaction is a phenomenon where saturated or loose soils suddenly lose internal strength and behave as a fluid. This behavior is in response to soil grain contraction and increased pore water pressures resulting from an earthquake or other intense ground shaking. In our opinion, the site soils are not susceptible to liquefaction. The relative density of native soils and lack of a shallow groundwater table is the primary basis for this opinion.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed structures should be supported on a well-compacted, firm and unyielding subgrade. Where feasible, native soils exposed at the slab-on-grade subgrade level can likely be compacted in-situ to the specifications of structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, prior to construction of the slab.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining crushed rock or gravel should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for design:

•	Active earth pressure (yielding condition)	35 pcf (equivalent fluid)
•	At-rest earth pressure (restrained condition)	55 pcf
•	Traffic surcharge (passenger vehicles)	70 psf (rectangular distribution)*
•	Passive earth pressure	300 pcf (equivalent fluid)
•	Coefficient of friction	0.40
•	Seismic surcharge	6H psf**

* Where applicable

** Where H equals the retained height (in feet)

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other loads should be included in the retaining wall design, where applicable.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill can consist of a less permeable soil, if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3. If drainage is not provided, hydrostatic pressures should be included in the wall design.

<u>Drainage</u>

During our subsurface exploration light perched groundwater seepage was encountered within B-1 within a fill layer that extended to about 10 feet bgs. As such, groundwater may be encountered within site excavations, such as excavations for new utilities and stormwater facilities. In addition, groundwater will likely be encountered during excavation and removal of the existing fill. Temporary measures to control surface water runoff and groundwater during construction would likely involve interceptor trenches, sumps, and/or dewatering pumps. ESNW should be consulted during preliminary grading to identify areas of seepage and to provide recommendations to reduce the potential for instability related to seepage effects.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 4.

Infiltration Feasibility

Based on the results of USDA textural analyses, native soils are classified as slightly gravelly sandy loam with corresponding fines content of 19 to 39 percent.

Small-scale infiltration BMPs (such as rain gardens or infiltration trenches) may be feasible depending largely on the proposed grading scheme. If significant grading will occur, the weathered soil zone may be completely removed to reveal very dense glacial till, which is not suitable for infiltration. ESNW can provide supplementary stormwater management recommendations, as project plans develop.

On-site Stormwater Management

The intent of BMP implementation is to infiltrate, disperse, and retain stormwater runoff on site to the extent feasible. The table below summarizes our evaluation of the BMPs from a geotechnical standpoint.

ВМР	Viable?	Limitations or Infeasibility Criteria
Lawns and Landscaped Areas		
T5.13 : Post-construction soil quality and depth (Volume V, Chapter 5)	Yes	
<u>Roofs</u>		
T5.30 : Full dispersion (Volume V, Chapter 5)	Yes	T5.30 : No flooding or erosion impacts are anticipated. However, adequate vegetative flow paths may not be available.
T5.10A : Downspout full infiltration systems (Volume III, Chapter 3)	No	T5.10A : The soils conditions including glacial till generally exhibit poor soil infiltration characteristics.
Bioretention (Volume V, Chapter 7)	No	The soils conditions including glacial till generally exhibit poor soil infiltration characteristics.
T5.10B: Downspout dispersion systems (Volume III, Chapter 3)	Yes	No flooding or erosion impacts are anticipated. However, adequate vegetative flow paths may not available.
T5.10C: Perforated stub-out connections (Volume III, Chapter 3)	Yes	Except where unweathered glacial till soil is exposed that will likely interfere with the trench bottom.
Other Hard Surfaces		
T5.30: Full dispersion (Volume V, Chapter 5)	Yes	No critical areas. No flooding or erosion impacts are anticipated. However, adequate vegetative flow paths are likely not available.
T5.15: Permeable pavement (Volume V, Chapter 5)	No	Glacial till will not allow for infiltration below driveways, could cause inundation unless tied into the storm system.
Bioretention (Volume V, Chapter 7)	Yes	Except where unweathered glacial till soil deposits are exposed at relatively shallow depths due to generally poor soil infiltration characteristics.
T5.12: Sheet flow dispersion T5.11: Concentrated flow dispersion (Volume V, Chapter 5)	Yes	No flooding or erosion impacts are anticipated. However, adequate vegetative flow paths are likely not available.

ESNW should review the final design to confirm our recommendations are included and to provide additional recommendations.

Excavations and Slopes

Excavation activities are likely to expose both loose to medium dense and dense to very dense glacial deposits. Provided appropriate methods of sloping and shoring (as necessary) for the excavations are incorporated into the design and construction, overall stability of site excavations is anticipated to be good. Based on the soil conditions observed at the test pit locations, the following allowable temporary slope inclinations, as a function of horizontal to vertical (H:V) inclination, may be used. The applicable Federal Occupation Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) soil classifications are also provided:

•	Loose and medium dense soils	1.5H:1V (Type C)
•	Areas containing groundwater seepage	1.5H:1V (Type C)
•	Dense soils	1H:1V (Type B)
•	Dense glacial till where no groundwater is exposed	0.75H:1V (Type A)

Steeper temporary slope inclinations within undisturbed, dense to very dense native deposits may be feasible based on the soil and groundwater conditions exposed within the excavations, however, must be evaluated by ESNW at the time of construction.

Permanent slopes should be planted with vegetation to enhance stability and to minimize erosion, and should maintain a gradient of 2H:1V or flatter. The presence of perched groundwater may cause localized sloughing of temporary slopes due to excess seepage forces. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope recommendations as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations.

Preliminary Pavement Sections

The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas containing unsuitable or yielding subgrade conditions will require remedial measures, such as overexcavation and/or placement of thicker crushed rock or structural fill sections, prior to pavement.

We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered for site alignments:

- A minimum of two inches of hot mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

The HMA, ATB and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by ASTM D1557. Heavier truck-traffic areas generally require thicker pavement sections depending on site usage, pavement life expectancy, and site traffic. ESNW can provide appropriate pavement section design recommendations for truck traffic areas and right-of-way improvements, upon request. Road standards utilized by Mukilteo may supersede the recommendations provided in this report.

If an inverted crown configuration will be used for on site pavement, we recommend including drainage within the aggregate section that will prevent water from building up within the pavement section and to protect the subgrade from excessive moisture.

Utility Support and Trench Backfill

In our opinion, native soils will generally be suitable for support of utilities. Organic-rich soils are not considered suitable for direct support of utilities and may require removal at utility grades if encountered. Remedial measures, such as overexcavation and replacement with structural fill and/or installation of geotextile fabric, may be necessary in some areas in order to provide support for utilities. Groundwater will likely be encountered within utility excavations, and caving of trench walls may occur where groundwater is encountered. Temporary construction dewatering, as well as temporary trench shoring, may be necessary during utility excavation and installation as conditions warrant.

In general, native soils may not be suitable for use as structural backfill throughout utility trench excavations, unless the soils are at (or slightly above) the optimum moisture content at the time of placement and compaction. Structural trench backfill should not be placed dry of the optimum moisture content. Each section of the site utility lines must be adequately supported in appropriate bedding material. Utility trench backfill should be placed and compacted to the specifications of structural fill as previously detailed in this report, or to the applicable specifications of Mukilteo or other responsible jurisdiction or agency.

LIMITATIONS

The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this study. ESNW should also be retained to provide testing and consultation services during construction.

LEGEND

Approximate Location of ESNW Boring, Proj. No. ES-7422, Aug. 2020

Approximate Location of ESNW Test Pit, Proj. No. ES-7422, Aug. 2020

- Subject Site
- **Existing Building**
- Wetland (Delineated by Others)

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Appendix A

Subsurface Exploration Boring and Test Pit Logs

ES-7422

A representative of ESNW observed, logged, and sampled three borings and 10 test pits, advanced at accessible locations within the property boundaries. Borings were completed on August 4 through 8, 2020 using a sonic drill rig and the test pits were excavated on August 21, 2020 using a trackhoe and operator retained by our firm. The maximum exploration depth was 137.5 feet below existing grades.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

Earth Solutions NWLLC SOIL CLASSIFICATION CHART

КЛ		ONS	SYME	BOLS	TYPICAL
141			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS	<u> </u>	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

DUAL SYMBOLS are used to indicate borderline soil classifications.

The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs.

	Solut NW	th ions uc	Ear 153 Rec Tele Fax	th Solut 65 N.E Imond, ephone :: 425-4	tions NW, LLC . 90th Street, Suite 100 Washington 98052 : 425-449-4704 149-4711	BORING NUMBER B-1 PAGE 1 OF 7
PPO				7400		DPO JECT NAME Mukilton Strickland Property
DATE	STARTE	D 8/4	<u> </u>	422	COMPLETED 8/5/20	GROUND ELEVATION 420 ft HOLE SIZE
DRIL	LING CON	NTRAC	TOR	Holoc	ene Drilling	GROUND WATER LEVELS:
DRIL		THOD	Soni	с		AT TIME OF DRILLING
LOGO	GED BY _	BCS			CHECKED BY SSR	AT END OF DRILLING
NOTE	Surfa	ce Co	nditio	ns: tall o	grass	AFTER DRILLING
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
	-	SM		5.0	Light brown silty SAND, loose,	moist (Fill) 415.0 wet, very rich in organics
	-	TPSL		9.5		410.5
10 01 - 7422.GPJ - GINT STD US.GDT - 9/15/20		ML			Gray sandy SILT with scattered	d gravel, soft to medium stiff, wet
20 GENER				20.0		
~ 20	1	1		20.0		(Continued Next Page)

BORING NUMBER B-1

PAGE 2 OF 7

PROJ	ECT NUM	MBER	ES-742	22 PROJECT NAME Mukilteo Strickland Property	
0 DEPTH (ft) 0	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
		ML		Gray sandy SIL I with gravel, hard, moist	
	-		24	4.0 Gray silty SAND with gravel, dense to very dense, moist	396.0
				-fragments of weakly cemented till -moderate groundwater seepage	
	-			-very wet cuttings (slurry) -water upwelling from auger stem during sample retrieval	
		SM		-weak iron oxide staining	
35				-light brown color	
147 - 7422.GPJ - GNT S	-		40	0.0 Gray silty SAND with gravel, loose to medium dense, wet	380.0
GENERAL BH / TP / M		SM		-weakly cemented	
				(Continued Next Page)	

BORING NUMBER B-1 PAGE 3 OF 7

	PROJ	ECT NUN	/IBER	ES-	7422	PROJECT NAME Mukilteo Strickland Property	
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
					43.0./-	Dark gray/tan poorly graded SAND with silt and gravel, loose to medium dense, wet	\.377.0
	_ 45		SP- SM			-moderate groundwater seepage, driller notes loose conditions -increased density from 45' to 50'	
					49.0	-very dense, slow drilling	371.0
			ML			Gray sandy SILT, hard, moist	
	50				50.0	Gray silty SAND with gravel, dense, moist to wet	370.0
	 - 55 		SM			-weak iron oxide staining -weakly cemented	
GPJ - GINT STD US.GDT - 9/15/20	60				60.0	-increasing sand and gravel content -very dense conditions, difficult drilling Gray silty SAND with gravel, very dense, wet	360.0
GENERAL BH / TP / WELL - 7422.	65		SM			-very weakly cemented	
						(Continued Next Page)	

BORING NUMBER B-1

PAGE 4 OF 7

	PROJ		IBER	ES-74	422	PROJECT NAME _ Mukilteo Strickland Property	
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
	 		SM		77.0	Gray silty SAND with gravel, very dense, wet (continued) -decreased sand and gravel content -decrease in sand grain size -slight increase in silt content -variable sand/silt content Gray sandy SILT, hard, moist	343.0
ENERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20			ML		84.0	Gray silty SAND with gravel, dense to very dense, moist to wet -weak to moderately cemented	336.0

BORING NUMBER B-1

PAGE 5 OF 7

	PROJ	ECT NUM	IBER	ES-742	2 PROJECT NAME Mukilteo Strickland Property	
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
	 		SM	SM -unremarkable fin -typical glacial till	Gray silty SAND with gravel, dense to very dense, moist to wet <i>(continued)</i> -unremarkable fine silty sand with gravel -typical glacial till	
	100			10	0.0 3 Gray silty SAND with gravel, very dense, moist	320.0
					-weak to moderately cemented	
GENERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20	_ <u>105</u> _ <u>110</u> 		SM		-cemented glacial till with variable sand/silt content	

BORING NUMBER B-1

PAGE 6 OF 7

PROJ		IBER	ES-7422	PROJECT NAME _Mukilteo Strickland Property	
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
 		SM		Gray silty SAND with gravel, very dense, moist <i>(continued)</i>	
<u> 120 </u> -	-		120	0 -boring paused at 120' at end of day Gray silty SAND with gravel, very dense, moist -driller adds approximately 10 gallons of water to assist drilling -decreasing fines, not cemented	300.0
 <u>125</u> 	-			-machine chatter	
EENERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20		SM		-very dense drilling conditions	

BORING NUMBER B-1 PAGE 7 OF 7

	PROJ		IBER	<u>ES-74</u>	7422 PROJECT NAME Mukilteo Strickland Property	
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
	135				Gray silty SAND with gravel, very dense, moist <i>(continued)</i>	
			SM		-driller adds approximately 10 gallons of water to assist drilling	282 5
					Boring terminated at 137.5 feet below existing grade. Groundwater seepage encountered at 27.0 and 45.0 feet during drilling. Boring backfilled with grout/bentonite.	202.0
NERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20						
GENE						

	Solut NW	th ions IIC	Ea 153 Re Tel Fa	rth Solu 365 N.E dmond, lephone x: 425-4	tions NW, LLC . 90th Street, Suite 100 Washington 98052 : 425-449-4704 449-4711	BORING NUMBER B-2 PAGE 1 OF 5		
			ES	7400		BDO JECT NAME Mukiltoo Strickland Droporty		
DATE		D 8/	<u> </u>	1422	COMPLETED 8/6/20	GROUND ELEVATION 430 ft HOLE SIZE		
DRIL	LING CON		TOR	Holoc	ene Drilling	GROUND WATER LEVELS:		
DRIL	LING MET	THOD	Son	ic		AT TIME OF DRILLING		
LOG	GED BY _	BCS			CHECKED BY SSR	AT END OF DRILLING		
ΝΟΤΙ	ES <u>Surfa</u>	ce Co	nditio	ns: tall g	grass	AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC I OG)))		MATERIAL DESCRIPTION		
		TPSL	<u>x 1/</u> 1/	<u></u>	Dark brown TOPSOIL			
	-	ML		4 1.0	Brown sandy SILT with scattered gr -moderate iron oxide staining -dark brown organics intermixed -becomes gray, medium to stiff	429.0 avel, very soft, wet		
				9.0		421.0		
					Gray silty fine SAND with scattered	gravel, dense, moist		
	-				-weakly cemented			
RAL BH / TP / WELL - 7422.6PJ - GINT STD US.GDT - 9/16	-	SM			-very dense drilling			
UNE NO DE NO				20.0		410 0		
		•	• • • • •			(Continued Next Page)		

BORING NUMBER B-2

PAGE 2 OF 5

	PROJ		IBER	ES-742	2 PROJECT NAME Mukilteo Strickland Property
	05 DEPTH (ft) 50	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
	 <u>25</u>				Gray silty fine SAND with scattered gravel, very dense, moist -light groundwater seepage at 20'
					-light brown color
					-weak iron oxide staining
	<u> </u>		SM		-difficult drilling
					-becomes wet, very weakly cemented
DT - 9/15/20	<u>35</u>				-becomes moist, weakly cemented
GPJ - GINT STD US.G					-thin lenses of coarse sand/gravel
. 7422	40				typical cemented glacial till
- MELL	40			40.	Gray silty fine SAND with gravel, very dense, moist
SENERAL BH / TP / /			SM		-weakly cemented

BORING NUMBER B-2

PAGE 3 OF 5

	PROJ		IBER	ES-7422	PROJECT NAMEMukilteo Strickland Property	PROJECT NAME Mukilteo Strickland Property					
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION						
					Gray silty fine SAND with gravel, very dense, moist (continued)						
					-lens of poorly graded sand with silt, increasing sand content, becomes wet						
					-weak iron oxide staining						
	<u>50</u> 		SM		-increased fines content						
	 				-coarse sand and gravel lenses						
					-becomes brownish in color						
					-becomes gray						
15/20					-moderate groundwater seepage						
T - 9/					-becomes wet						
JS.GD	60			60.0	-water upwelling from drill stem upon sample retrieval	370.0					
STD (SM		Gray silty fine SAND with gravel, very dense, moist to wet						
- GINT				61.0	Gray well-graded GRAVEL with silt and sand, loose to medium dense, wet	369.0					
ELL - 7422.GPJ											
ENERAL BH / TP / WE			GW- GM		-lenses of silty fine sand/sandy silt						

BORING NUMBER B-2

PAGE 4 OF 5

PROJ	PROJECT NUMBER		ES-7422	PROJECT NAME Mukilteo Strickland Property	
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
	-	GW- GM	67.5	Gray well-graded GRAVEL with silt and sand, loose to medium dense, wet <i>(continued)</i>	262.5
	-	SM		Gray silty fine SAND with scattered gravel, dense, wet	
		SP- SM	69.0	Gray poorly graded SAND with silt and gravel, loose, wet	361.0
	-		71.0	Gray silty fine SAND, dense,wet	359.0
	-	SM			
_ 75			75.0	-drilling paused at 75' at end of day, driller adding water while casing boring Gray SILT with sand, stiff to hard, moist	355.0
	-	ML		-drilling difficulty indicates till	
	-		80.0	-casing filled with water	350.0
	-	SM		Gray silty SAND with gravel, very dense, moist	
I- GINT SID US.GD		ML	82.5	Gray sandy SILT, hard, moist	347.5
/ WELL - 7422.GPJ			85.0	Gray silty SAND with gravel, very dense, moist	345.0
GENERAL BH / IF		SM			

BORING NUMBER B-2 PAGE 5 OF 5

	PROJ	ECT NUN	IBER	ES-7422	PROJECT NAME Mukilteo Strickland Property	
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
L BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20	90	S	SM		Gray silly SAND with gravel, very dense, moist <i>(continued)</i> weakly cementeddriller adds water to assist drilling Boring terminated at 100.0 feet below existing grade. Groundwater seepage encountered at 20.0 and 58.0 feet during drilling. Boring backfilled with grout/bentonite.	330.0
GENEF						

Earth Solutions Earth Solutions Redmond,			utions NW, LLC E. 90th Street, Suite 100 I, Washington 98052	BORING NU	PAGE 1 OF 5	
	NWLLC	Telephon Fax: 425	e: 425-449-4704 -449-4711			
PROJEC	T NUMBER	ES-7422		PROJECT NAME _ Mukilteo Strick	kland Property	
DATE ST	ARTED 8	/6/20	COMPLETED <u>8/7/20</u>	GROUND ELEVATION 445 ft	HOLE SIZE	
DRILLING	G CONTRA	CTOR Holo	ocene Drilling	GROUND WATER LEVELS:		
DRILLING	G METHOD	Sonic		AT TIME OF DRILLING		
LOGGED	BY BCS		CHECKED BY SSR	AT END OF DRILLING		
NOTES _	Surface Co	onditions: gra	ass/blackberries	AFTER DRILLING		
DEPTH (ft) (ft)	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
0	TPS		Dark brown TOPSOIL intermixed	l with gravel (Fill)		
		1.5				443.5
	SM		Brown silty SAND with gravel, loo	ose, moist		
		2.5	Grav/light tan sandy SILT soft in	noist to wet		442.5
-	ML	35	-moderate to heavy iron oxide sta	aining		111 5
			Gray silty fine SAND with gravel,	dense, moist		441.5
			-becomes very dense, decreased	d gravel content		
10			-weak to moderately cemented			
	SM					
_ 15			-decreased fines, decreased deg	ree of cementation		
			-difficult drilling			
	1					

BORING NUMBER B-3

PAGE 2 OF 5

	PROJ	ECT NUN	IBER	ES-7422	PROJECT NAME Mukilteo Strickland Property	
	(ff) (ff)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
					Gray silty fine SAND with scattered gravel, dense, moist -lenses of sandy silt and poorly graded silty sand -very weakly cemented	
	30		SM		-varying sand/silt content -driller added 5-10 gallons of water to assist drilling	
15/20	35				-becomes wet	
- 7422.GPJ - GINT STD US.GDT - 9/	40		SP- SM	39.0	-large gravels/cobbles Gray poorly graded SAND with silt, medium dense, moist	<u>406.0</u> 405.0
GENERAL BH / TP / WELL			SP- SM SM	41.5	Gray poorly graded SAND with silt and gravel, medium dense, moist -light groundwater seepage Gray silty fine SAND with scattered gravel, dense, moist	403.5

BORING NUMBER B-3

PAGE 3 OF 5

Ŀ	PROJ		1BER	ES-7422	PROJECT NAME _ Mukilteo Strickland Property					
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION					
-	-				Gray silty fine SAND with scattered gravel, dense, moist (continued)					
-	45				-weakly cemented					
_	_				-lens of poorly graded sand with silt					
	- 50		SM							
_	_									
-	-									
	55				-becomes wet					
				55.5	-light groundwater seepage Gray sandy SILT, hard, moist to wet	389.5				
US.GDT - 9/15/20			ML	60.0	-drilling paused at 60' at end of day	385.0				
P / WELL - 7422.GPJ - GINT STD			SM		Gray silty fine SAND, hard, wet	004.0				
GENERAL BH / T	65		ML	<u> - - - </u> 64.0	Gray sandy SILT, hard, moist	381.0				

BORING NUMBER B-3 PAGE 4 OF 5

	PROJ		IBER	ES-	7422	PROJECT NAME _Mukilteo Strickland Property						
	DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC)))	MATERIAL DESCRIPTION						
	 		ML			Gray sandy SILT, hard, moist <i>(continued)</i>						
					72.0	Brown poorly graded GRAVEL with silt and sand, loose, wet	373.0					
			GP- GM			light groundwater scopage, mederate iron exide staining						
					73.5	Gray sandy SILT, hard, moist	371.5					
			ML									
	75				75.0	Gray silty SAND with gravel, very dense, moist	370.0					
						-weak to moderately cemented						
9/15/20						-weak to moderate cementation						
TD US.GDT - §			SM			-difficult drilling						
GINT S'												
.GPJ - (95											
- 7422	85											
WELL												
Н / ТР /												
RAL B												
GENE												
						(Continued Next Page)						

GENERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-3 PAGE 5 OF 5

PROJECT NUMBER		ES-7	422	PROJECT NAME Mukilteo Strickland Property		
DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
					Gray silty SAND with gravel, very dense, moist (continued)	
		SM			-very difficult drilling	
90				90.0	Boring terminated at 90.0 feet below existing grade. Groundwater seepage encountered at 41.0, 55.0 and	355.0
					73.0 feet during drilling. Boring backfilled with bentonite.	

	k Ear Solut NW	th 15365 N.E ions Redmond, Telephone Fax: 425-	itions I 5. 90th 7 Wash 9: 425 449-47	NW, Ll Stree ningtor -449-4 711	.C , Suite 100 98052 704	TEST PIT NUMBER TP-1 PAGE 1 OF 1		
PROJ	ECT NUN STARTE	IBER <u>ES-7422</u> D <u>8/21/20</u>		СОМР	LETED 8/21/20	PROJECT NAME Mukilteo Strickland Property GROUND ELEVATION 420 ft		
EXCA	VATION		IW Exe	cavatir	g	GROUND WATER LEVELS:		
EXCA	VATION					AT TIME OF EXCAVATION		
LOGG	ED BY _	BCS		CHEC	KED BY SSR	AT END OF EXCAVATION		
NOTE	S Surfa	ce Conditions: tall	grass			AFTER EXCAVATION		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
0					Brown silty SAND	, medium dense, moist (Fill)		
		MC = 9.5%	SM		-asphalt chunk			
		MC = 15.7%			-becomes blue gra	ay, scrap metal	113 (
		MC = 100.0%	TPSI	-	Dark brown TOPS	OIL with sand (Fill)		
					_{9.0} -grades into silty s	and with gravel	411.0	
					Brown silty SAND	with gravel, dense, moist to wet (Fill)		
10			SM					
					11.0		409.0	
		<u>MC = 20.7%</u>			Test pit terminated	d at 11.0 feet below existing grade. No groundwater encountered during		

GENERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20

	Ear Solut NW	th 15365 N.E Cons Redmond, Telephone Fax: 425-4	tions N . 90th Wash : 425- 149-47	IW, LI Street ington 449-4 11	LC t, Suite 100 98052 704		TEST PIT NUMBER TP-3 PAGE 1 OF 1			
PRO DATE EXCA EXCA LOGO NOTE	JECT NUM STARTE AVATION I AVATION I GED BY _	IBER <u>ES-7422</u> D <u>8/21/20</u> CONTRACTOR N METHOD BCS a of Topsoil & Sod	(W Exc (10": for	COMP avatir CHEC	LETED <u>8/21/2</u> ng KED BY <u>SSR</u> hrubs	20	PROJECT NAME _Mukilteo Strickland Property GROUND ELEVATION _420 ft TEST PIT SIZE			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
0	5	MC = 5.8% Fines = 18.5% MC = 9.4% MC = 9.4%	SM		Dark b 0.9 Light b -weakl [USDA -becor 5.0 Test p ground	prown TOPS prown silty S ly cemented A Classifica mes gray, v it terminate dwater enco	'SOIL 419.1 SAND, dense, damp 3d ation: gravelly loamy SAND] 415.0 very dense, moist 415.0 ed at 5.0 feet below existing grade due to refusal in very dense till. No zountered during excavation. No caving observed. 415.0			
		Fines = 18.5% MC = 9.4% MC = 9.4%	SM		-weakl [USD4 -becor 5.0 Test p ground	ly cemented A Classifica mes gray, v it terminate dwater enco	ation: gravelly loamy SAND] very dense, moist ded at 5.0 feet below existing grade due to refusal in very dense till. No countered during excavation. No caving observed.			

Earth Soluti 15365 N.E. Redmond, N Telephone: Fax: 425-4 BER ES-7422 8/21/20 DNTRACTOR NW	ions N 90th 425- 49-47 (<u>N Exc</u>	W, LL Street, ington 449-47 '11 COMPI cavatin	C Suite 1 98052 704	00 8/21/20	TEST PIT NUMBER TP-4 PAGE 1 OF PROJECT NAME _Mukilteo Strickland Property GROUND ELEVATION _430 ft TEST PIT SIZE		
ETHOD					AT TIME OF EXCAVATION		
CS	(CHEC	CED BY	SSR	AT END OF EXCAVATION		
of Topsoil & Sod 1	2": fo	rest de	tritus		AFTER EXCAVATION		
TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		
	TPSL	<u>11. 11. 11. 11. 11. 11. 11. 11. 11. 11.</u>		Dark brown TOPS	SOIL		
MC = 9.9% MC = 11.7% MC = 9.6% Fines = 39.1%	SM		6.0	-moderate iron oxi -weak to moderate -becomes gray, ve [USDA Classificat Test pit terminated excavation. No ca	, medium dense, moist ide staining to 4' ely cemented ery dense ion: gravelly fine sandy LOAM] d at 6.0 feet below existing grade. No groundwater encountered during ving observed.	429.0	
	Earth Solut 15365 N.E. Redmond, Y Telephone: Fax: 425-4 ER <u>ES-7422</u> 8/21/20 DNTRACTOR <u>NV</u> ETHOD CS of Topsoil & Sod 1 TESTS MC = 9.9% MC = 9.9% MC = 9.9% MC = 9.9% MC = 9.9%	Earth Solutions N 15365 N.E. 90th Redmond, Wash Telephone: 425- Fax: 425-449-47 ER ES-7422 8/21/20 DNTRACTOR NW Exc ETHOD CS f Topsoil & Sod 12": for G G GG $GGGG$ $GGGGGGGG$	Earth Solutions NW, LL 15365 N.E. 90th Street, Redmond, Washington Telephone: $425-449-47$ Fax: $425-449-4711$ FR <u>ES-7422</u> 8/21/20 COMPL DNTRACTOR <u>NW Excavatine</u> THOD CS <u>CHECK</u> f Topsoil & Sod 12": forest de TESTS 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;	Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 1 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 ER ES-7422 8/21/20 COMPLETED DNTRACTOR NW Excavating ETHOD CS CHECKED BY of Topsoil & Sod 12": forest detritus TESTS 0 ; 0 0; 00 ; 0 ; 00 ; 00 ; 00 ; 0 ; 00 ; 0 ; 0 ; 00 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;	Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 ER S21/20 COMPLETED 8/21/20 DNTRACTOR NW Excavating ETHOD	Testh Solutions MV, LLC TEST PIT NUMBERT 13350 NE 2015 Street, Suite 100 PAGE 1 Redmond, Washington 98052 PROJECT NAME Mukileo Strickland Property 12120 COMPLETED 8/21/20 GROUND ELEVATION 430 ft TEST PIT SUIZE 8/21/20 COMPLETED 8/21/20 GROUND ELEVATION 430 ft TEST PIT SUZE 9/100 GROUND ELEVATION 430 ft TEST PIT SUZE GROUND WATER LEVELS; 4T END OF EXCAVATION	

	Solut NW	th 15365 N.E 001S Redmond, Telephone Fax: 425-4	tions I 2. 90th Wash 2: 425 449-47	NW, LL Street, hington -449-47 711	.C , Suite 1 98052 704	00	TEST PIT NUMBER TP-5 PAGE 1 OF 1			
PROJECT NUMBER ES-7422							PROJECT NAME _ Mukilteo Strickland Property			
DATE	DATE STARTED _8/21/20 COMPLETED _8/21/20						GROUND ELEVATION 437 ft	TEST PIT SIZE		
EXCA	VATION		IW Ex	cavatin	g		GROUND WATER LEVELS:			
EXCA	VATION						AT TIME OF EXCAVATION _			
LOGG	ED BY _	BCS		CHEC	KED BY	SSR	AT END OF EXCAVATION			
NOTE	S Depth	of Topsoil & Sod	d 8": forest shrubs				AFTER EXCAVATION			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTIO	N		
			TPSI	<u>×17</u>	0.7	Dark brown TOPS	SOIL		400.0	
		MC = 9.6%	SM		4.0	Light brown silty S -weak iron oxide s -becomes gray/da	SAND, medium dense, moist staining, weakly cemented ark gray		433.0	
						Test pit terminate groundwater enco	d at 4.0 feet below existing grade due untered during excavation. No caving	to refusal in very dense till. No observed.		

	k Ear Solut NW	Earth Solu 15365 N.E ONS Redmond, Telephone Fax: 425-	tions 1 2. 90th Wash 2: 425- 449-47	W, LL Street ington 449-4 11	C Suite 100 PAGE 1 04 TEST PIT NUMBER T PAGE 1	P-6 OF 1
PROJE DATE EXCAV EXCAV LOGG	ECT NUM STARTE VATION (VATION ED BY _	IBER ES-7422 D 8/21/20 CONTRACTOR N METHOD	IW Exc	COMP cavatin CHEC	PROJECT NAME Mukilteo Strickland Property ETED _8/21/20 GROUND ELEVATION _422 ft TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION ED BY _SSR AT END OF EXCAVATION AFTER EXCAVATION AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
 <u>5</u>		MC = 11.4% MC = 15.1%	SM		Dark brown TOPSOIL 1.0 -root intrusions to 2.5' Brown silty SAND, dense, moist -becomes gray, weak iron oxide staining -weakly cemented	421.0
		WIC - 12.878			Test pit terminated at 6.0 feet below existing grade due to refusal in very dense till. No groundwater encountered during excavation. No caving observed.	

GENERAL BH / TP / WELL - 7422.GPJ - GINT STD US.GDT - 9/15/20
	Ear Solut NW	th 15365 N.E ions Redmond, Telephone Fax: 425-	tions NW, LLC . 90th Street, Su Washington 980 . 425-449-4704 449-4711	ite 100)52	TEST PIT NUMBER TP-7 PAGE 1 OF 1
PROJ DATE EXCA EXCA LOGO NOTE	ECT NUM	MBER ES-7422 D 8/21/20 CONTRACTOR N METHOD BCS n of Topsoil & Sod	COMPLET W Excavating CHECKED 12": tall grass	ED <u>8/21/20</u> BY <u>SSR</u>	PROJECT NAME Mukilteo Strickland Property GROUND ELEVATION 431 ft TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION
	-	MC = 17.6%	TPSL 2 34 1.0	Gray/brown TOF	SOIL
 _ <u>5</u>		MC = 13.5%	SM	-becomes gray, -moderate iron o -grades into silty	dense, weakly cemented xide staining to BOH sand with gravel
				l'est pit terminat excavation. No c	ed at 6.0 teer below existing grade. No groundwater encountered during aving observed.

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711			IW, LL Street ington 449-47 11	C Suite 100 98052 704	TEST PIT NUMBER TP-9 PAGE 1 OF 1		
PROJ	ECT NUN	IBER _ ES-7422				PROJECT NAME	
DATE	STARTE	D 8/21/20	(COMP	_ETED <u>8/21/20</u>	GROUND ELEVATION 447 ft TEST PIT SIZE	
EXCA	VATION		W Exc	avatin	g	GROUND WATER LEVELS:	
EXCA	VATION I					AT TIME OF EXCAVATION	
LOGG	ED BY	BCS	(CHEC	KED BY SSR	AT END OF EXCAVATION	
NOTES _ Depth of Topsoil & Sod 8": lawn grass			n gras	S	AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
			TPSL	<u>7, 1</u> 7, 7 <u>7</u>	Brown/gray TOPSC	DIL	446.3
		MC = 8.2%	SM		Tan silty SAND with -becomes gray, der	n scattered gravel, medium dense, moist nse, weakly cemented	-++0.3
		MC = 9.3%			4.0 Test pit terminated excavation. No cav	at 4.0 feet below existing grade. No groundwater encountered during ing observed.	443.0

Ea Solu NM	tions fuc Earth Solu 15365 N.E Redmond, Telephone Fax: 425-4	tions f . 90th Wash : 425 449-47	NW, Ll Street hington -449-4 711	C Suite 100 98052 '04	ER TP-10 PAGE 1 OF 1
PROJECT NU DATE START EXCAVATION EXCAVATION LOGGED BY NOTES <u>Surf</u>	MBER ES-7422 ED 8/21/20 CONTRACTOR N METHOD BCS ace Conditions: blac	IW Exc	COMP cavatin CHECI	PROJECT NAME _Mukilteo Strickland Property LETED _8/21/20 GROUND ELEVATION _440 ft TEST PIT SIZE _ G GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION	
DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
	MC = 18.4% Fines = 32.7%	SM SM		Dark gray silty SAND, medium dense, moist (Fill) -large woody debris 3.0 Light brown silty SAND, dense, moist to wet -weak iron oxide staining [USDA Classification: gravelly sandy LOAM]	437.0
	MC = 16.0%			-becomes gray 6.0 -moderate iron oxide staining Test pit terminated at 6.0 feet below existing grade. No groundwater encountere excavation. No caving observed.	434.0 d during

Appendix B

Laboratory Test Results

ES-7422

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

Report Distribution

ES-7422

EMAIL ONLY

Westcott Holdings, Inc. 1010 Market Street Kirkland, Washington 98033

Attention: Mr. Ryan Appleby

APPENDIX B

WWMH INPUT PARAMETERS AND RESULTS

Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

WWHM2012

PROJECT REPORT

Carrik Court Flow Control and WQ Facility Sizing CPH Project No. 0054-20-034

General Model Information

Project Name:	211217_Vault Sizing	
Site Name:	Carrik Court	
Site Address:		
City:		
Report Date:	1/18/2022	
Gage:	Everett	
Data Start:	1948/10/01	
Data End:	2009/09/30	
Timestep:	15 Minute	
Precip Scale:	0.800	
Version Date:	2018/10/10	
Version:	4.2.16	

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year

Landuse Basin Data Predeveloped Land Use

Predev-N

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Mod	acre 3.42
Pervious Total	3.42
Impervious Land Use	acre
Impervious Total	0
Basin Total	3.42
Flomont Flows To:	

Element Flows To: Surface Inte

Interflow

Predev-S

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Mod	acre 4.93
Pervious Total	4.93
Impervious Land Use	acre
Impervious Total	0
Basin Total	4.93

Element Flows To: Surface Interflow

Upstream-N

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.277
Impervious Total	0.277
Basin Total	0.277

Element Flows To: Surface Interflow Groundwater

Upstream-S

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.095
Impervious Total	0.095
Basin Total	0.095
Flowert Flower To	

Element Flows To: Surface Interflow Groundwater

Predev_Drive G Bypass: GroundWater: Pervious Land Use C. Forest. Mod

Pervious Land Use C, Forest, Mod	acre 0.58
Pervious Total	0.58
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.58

No

No

Element Flows To: Surface Interflow

Mitigated Land Use

Dev-N

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.36
Pervious Total	0.36
Impervious Land Use ROOF TOPS FLAT SIDEWALKS MOD	acre 0.195 0.015
Impervious Total	0.21
Basin Total	0.57
Element Flows To: Surface	Interflow

Dev-S

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 2.113
Pervious Total	2.113
Impervious Land Use ROADS MOD ROOF TOPS FLAT SIDEWALKS MOD	acre 2.18 1.849 0.606
Impervious Total	4.635
Basin Total	6.748
Element Flows To:	

Interflow
Vault 1

Upstream-N

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.062
Impervious Total	0.062
Basin Total	0.062

Element Flows To: Surface Interflow Groundwater

Bypass-N

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.043
Impervious Total	0.043
Basin Total	0.043

Element Flows To: Surface Interflow Groundwater

Upstream-S

Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROADS MOD	acre 0.309
Impervious Total	0.309
Basin Total	0.309
Flement Flows To:	

Element Flows To:GroundwaterSurfaceInterflowGroundwaterVault 1Vault 1Vault 1

Bypass-S Bypass:	Yes
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.059
Pervious Total	0.059
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.059
Element Flows To: Surface	Interflow

Offsite-Dev S Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.377
Pervious Total	0.377
Impervious Land Use ROADS MOD	acre 0.185
Impervious Total	0.185
Basin Total	0.562
Element Flows To: Surface Vault 1	Interflow Vault 1

Drive G_Dev Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.195
Pervious Total	0.195
Impervious Land Use ROADS MOD ROOF TOPS FLAT	acre 0.158 0.227
Impervious Total	0.385
Basin Total	0.58
Element Flows To:	

Surface Interflow Groundwater StormTech 2 StormTech 2 Routing Elements Predeveloped Routing

Mitigated Routing

Vault 1		
Width:	78 ft.	
Length:	108 ft.	
Depth:	15.5 ft.	
Infiltration On		
Infiltration rate:	0.04	
Infiltration safety factor	r: 1	
Total Volume Infiltrate	d (ac-ft.):	234.178
Total Volume Through	Riser (ac-ft.):	441.327
Total Volume Through	Facility (ac-ft.):	675.505
Percent Infiltrated:		34.67
Total Precip Applied to	o Facility:	0
Total Evap From Facil	ity:	0
Discharge Structure		
Riser Height:	15 ft.	
Riser Diameter:	18 in.	
Orifice 1 Diameter:	0.6125 inEleva	ation:0 ft.
Orifice 2 Diameter:	1 in. Eleva	ation:13.25 ft.
Element Flows To:		
Outlet 1	Outlet 2	

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.193	0.000	0.000	0.000
0.1722	0.193	0.033	0.004	0.007
0.3444	0.193	0.066	0.006	0.007
0.5167	0.193	0.099	0.007	0.007
0.6889	0.193	0.133	0.008	0.007
0.8611	0.193	0.166	0.009	0.007
1.0333	0.193	0.199	0.010	0.007
1.2056	0.193	0.233	0.011	0.007
1.3778	0.193	0.266	0.011	0.007
1.5500	0.193	0.299	0.012	0.007
1.7222	0.193	0.333	0.013	0.007
1.8944	0.193	0.366	0.014	0.007
2.0667	0.193	0.399	0.014	0.007
2.2389	0.193	0.433	0.015	0.007
2.4111	0.193	0.466	0.015	0.007
2.5833	0.193	0.499	0.016	0.007
2.7556	0.193	0.532	0.016	0.007
2.9278	0.193	0.566	0.017	0.007
3.1000	0.193	0.599	0.017	0.007
3.2722	0.193	0.632	0.018	0.007
3.4444	0.193	0.666	0.018	0.007
3.6167	0.193	0.699	0.019	0.007
3.7889	0.193	0.732	0.019	0.007
3.9611	0.193	0.766	0.020	0.007
4.1333	0.193	0.799	0.020	0.007
4.3056	0.193	0.832	0.021	0.007
4.4778	0.193	0.866	0.021	0.007
4.6500	0.193	0.899	0.022	0.007
4.8222	0.193	0.932	0.022	0.007
4.9944	0.193	0.965	0.022	0.007

5.1667 5.3389 5.5111 5.6833 5.8556 6.0278 6.2000 6.3722 6.5444 6.7167 6.8889 7.0611 7.2333 7.4056 7.5778 7.7500 7.9222 8.0944 8.2667 8.4389 8.6111 8.7833 8.9556 9.1278 9.3000 9.4722 9.6444 9.8167 9.9889 10.161 10.333 10.506 10.678 10.850 11.022 11.194 11.367 11.539 11.711 11.883 12.056 12.228 12.400 12.572 12.744	0.193 0	0.999 1.032 1.065 1.099 1.132 1.165 1.199 1.232 1.265 1.298 1.332 1.365 1.398 1.432 1.465 1.498 1.532 1.565 1.598 1.632 1.665 1.698 1.731 1.765 1.798 1.831 1.865 1.898 1.931 1.965 1.998 2.031 2.065 2.098 2.131 2.065 2.098 2.131 2.264 2.298 2.331 2.364 2.398 2.431 2.464	0.023 0.023 0.024 0.024 0.025 0.025 0.025 0.026 0.026 0.026 0.027 0.027 0.027 0.027 0.028 0.028 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.035 0.035 0.036 0.036	0.007 0
11.711 11.883 12.056 12.228 12.400 12.572 12.744 12.917 13.089 13.261 13.433 13.606	0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193	2.264 2.298 2.331 2.364 2.398 2.431 2.464 2.497 2.531 2.564 2.597 2.631	0.034 0.035 0.035 0.035 0.036 0.036 0.036 0.036 0.036 0.036 0.039 0.048 0.053	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
13.778 13.950 14.122 14.294 14.467 14.639 14.811 14.983	0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193 0.193	2.664 2.697 2.731 2.764 2.797 2.831 2.864 2.897	0.057 0.060 0.063 0.066 0.068 0.070 0.073 0.075	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

15.156	0.193	2.930	1.047	0.007
15.328	0.193	2.964	2.897	0.007
15.500	0.193	2.997	4.719	0.007
15.672	0.178	2.707	5.861	0.000

StormTech 2

Chamber Model: Dimensions	3500	
Max Row Length:	240	
Number of Chambers:	32	
Number of Endcaps:	4	
Top Stone Depth:	12	
Bottom Stone Depth:	9	
Discharge Structure		
Riser Height:	4.75 ft.	
Riser Diameter:	12 in.	
Orifice 1 Diameter:	0.5 in.	Elevation:0 ft.
Element Flows To:		
Outlet 1	Outlet 2	

StormTech Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
3.0000	0.176	0.000	0.000	0.000
3.0444	0.176	0.007	0.001	0.000
3.0889	0.176	0.015	0.002	0.000
3.1333	0.176	0.023	0.002	0.000
3.1778	0.176	0.031	0.002	0.000
3.2222	0.176	0.039	0.003	0.000
3.2667	0.176	0.047	0.003	0.000
3.3111	0.176	0.054	0.003	0.000
3.3556	0.176	0.062	0.004	0.000
3.4000	0.176	0.070	0.004	0.000
3.4444	0.176	0.078	0.004	0.000
3.4889	0.176	0.086	0.004	0.000
3.5333	0.176	0.094	0.005	0.000
3.5778	0.176	0.101	0.005	0.000
3.6222	0.176	0.109	0.005	0.000
3.6667	0.176	0.117	0.005	0.000
3.7111	0.176	0.125	0.005	0.000
3.7556	0.176	0.133	0.005	0.000
3.8000	0.176	0.141	0.006	0.000
3.8444	0.176	0.148	0.006	0.000
3.8889	0.176	0.156	0.006	0.000
3.9333	0.176	0.164	0.006	0.000
3.9778	0.176	0.172	0.006	0.000
4.0222	0.176	0.180	0.006	0.000
4.0667	0.176	0.188	0.007	0.000
4.1111	0.176	0.195	0.007	0.000
4.1556	0.176	0.203	0.007	0.000
4.2000	0.176	0.211	0.007	0.000
4.2444	0.176	0.219	0.007	0.000
4.2889	0.176	0.227	0.007	0.000
4.3333	0.176	0.235	0.007	0.000
4.3778	0.176	0.242	0.008	0.000
4.4222	0.176	0.250	0.008	0.000
4.4667	0.176	0.258	0.008	0.000
4.5111	0.176	0.266	0.008	0.000
4.5556	0.176	0.274	0.008	0.000
4.6000	0.176	0.282	0.008	0.000
4.6444	0.176	0.289	0.008	0.000

4.6889	0.176	0.297	0.008	$0.000 \\ 0.000$
4.7333	0.176	0.305	0.008	
4.7778 4.8222	0.176	0.313	0.009	0.000
	0.176	0.321	0.009	0.000
4.8667 4.9111	0.176	0.329	0.009	0.000
4.9556	0.176	0.344	0.009	0.000
5.0444 5.0889	0.176 0.176	0.360	0.009	0.000
5.1333	0.176	0.376	0.009	0.000
5.1778	0.176	0.384	0.010	
5.2222	0.176	0.391	0.010	0.000
5.2667	0.176	0.399	0.010	0.000
5.3111	0.176	0.407	0.010	$0.000 \\ 0.000$
5.3556	0.176	0.415	0.010	
5.4000	0.176	0.423	0.010	$0.000 \\ 0.000$
5.4444	0.176	0.431	0.010	
5.4889	0.176	0.438	0.010	0.000
5.5333	0.176	0.446	0.010	0.000
5.5778	0.176	0.454	0.010	0.000
5.6222	0.176	0.462	0.011	0.000
5.6667	0.176	0.470	0.011	$0.000 \\ 0.000$
5.7111	0.176	0.478	0.011	
5.7556	0.176	0.485	0.011	$0.000 \\ 0.000$
5.8000	0.176	0.493	0.011	
5.8444	0.176	0.501	0.011	$0.000 \\ 0.000$
5.8889	0.176	0.509	0.011	
5.9333	0.176	0.517	0.011	$0.000 \\ 0.000$
5.9778	0.176	0.525	0.011	
6.0222	0.176	0.532	0.011	$0.000 \\ 0.000$
6.0667	0.176	0.540	0.011	
6.1111	0.176	0.548	0.012	$0.000 \\ 0.000$
6.1556	0.176	0.556	0.012	
6.2000	0.176	0.564	0.012	$0.000 \\ 0.000$
6.2444	0.176	0.572	0.012	
6.2889	0.176	0.579	0.012	$0.000 \\ 0.000$
6.3333	0.176	0.587	0.012	
6.3778	0.176	0.595	0.012	$0.000 \\ 0.000$
6.4222	0.176	0.603	0.012	
6.4667	0.176	0.611	0.012	0.000
6.5111	0.176	0.619	0.012	0.000
6.5556	0.176	0.626	0.012	0.000
6.6000	0.176	0.634	0.012	0.000
6.6444	0.176	0.642	0.013	0.000
6.6889	0.176	0.650	0.013	0.000
6.7333	0.176	0.658	0.013	0.000
6.7778	0.176	0.666	0.013	0.000
6.8222	0.176	0.673	0.013	0.000
6.8667	0.176	0.681	0.013	0.000
6.9111	0.176	0.689	0.013	0.000
6.9556	0.176	0.697	0.013	
7.0000 7.0444	0.176 0.176	0.705	0.013	0.000
7.0889	0.000	0.000	0.013	0.000

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	3.42
Total Impervious Area:	0.277

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.36 Total Impervious Area: 0.315

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.1246035 year0.17090510 year0.20512225 year0.25258450 year0.291129

0.332507

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.110969
5 year	0.15034
10 year	0.17916
25 year	0.218831
50 year	0.250831
100 year	0.285

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

i cai	Fieuevelopeu	wiitiyat
1949	0.112	0.107
1950	0.142	0.134
1951	0.143	0.128
1952	0.115	0.104
1953	0.126	0.132
1954	0.239	0.186
1955	0.148	0.127
1956	0.107	0.060
1957	0.145	0.105
1958	0.246	0.248

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972	0.110 0.110 0.315 0.127 0.149 0.097 0.097 0.201 0.117 0.218 0.092 0.144 0.151	$\begin{array}{c} 0.101\\ 0.098\\ 0.316\\ 0.125\\ 0.144\\ 0.078\\ 0.087\\ 0.088\\ 0.217\\ 0.115\\ 0.224\\ 0.088\\ 0.122\\ 0.154\end{array}$
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1988	0.123 0.174 0.121 0.086 0.088 0.091 0.183 0.114 0.092 0.096 0.127 0.108 0.146 0.242 0.129 0.112 0.112 0.121	0.127 0.155 0.124 0.087 0.087 0.068 0.145 0.089 0.088 0.091 0.118 0.105 0.152 0.153 0.129 0.106 0.109
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	0.088 0.115 0.114 0.086 0.092 0.083 0.183 0.276 0.142 0.085 0.249 0.070 0.076 0.105 0.198 0.085 0.206 0.185 0.206 0.140 0.085	0.081 0.100 0.080 0.083 0.079 0.118 0.144 0.140 0.067 0.225 0.077 0.073 0.097 0.197 0.090 0.127 0.123 0.091 0.091

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 **Rank** Predeveloped Mitigated 1 0.3151 0.3159

1	0.3151	0.3159
2	0.2757	0.2479
3	0.2487	0.2245

4 5 6 7 8 9 10 112 13 4 5 6 7 8 9 10 112 13 4 5 6 7 8 9 10 112 13 4 5 6 7 8 9 10 112 13 4 5 6 7 8 9 21 22 32 4 5 6 7 8 9 31 23 33 4 5 6 7 8 9 33 33 33 33 33 33 33 33 33 33 33 33 3	0.2462 0.2417 0.2393 0.2178 0.2058 0.2013 0.1977 0.1852 0.1833 0.1827 0.1741 0.1506 0.1489 0.1476 0.1459 0.1443 0.1443 0.1433 0.1425 0.1422 0.1397 0.1267 0.1267 0.1265 0.1261 0.1265 0.1261 0.1206 0.1215 0.1206 0.1147 0.1230 0.1215 0.1206 0.1147 0.1230 0.1215 0.1206 0.1147 0.1145 0.1145 0.1145 0.1145 0.1145 0.1145 0.1145 0.1125 0.1125 0.1123 0.1099 0.1076 0.1069 0.1046	0.2241 0.2171 0.1967 0.1861 0.1554 0.1545 0.1534 0.1516 0.1442 0.1442 0.1440 0.1395 0.1395 0.1395 0.1325 0.1274 0.1274 0.1274 0.1274 0.1274 0.1274 0.1254 0.1254 0.1253 0.1254 0.1050 0.1051 0.1050 0.1001 0.0979 0.0975 0.0912 0.0912
39 40 41 42 43 44 45 46 47 48 49 50 51	0.1099 0.1097 0.1076 0.1069 0.1046 0.0992 0.0972 0.0970 0.0958 0.0923 0.0918 0.0917 0.0906	0.0979 0.0975 0.0912 0.0911 0.0899 0.0887 0.0883 0.0877 0.0876 0.0874 0.0870 0.0867
52 53 54 55 56 57 58 59 60 61	0.0876 0.0863 0.0858 0.0852 0.0850 0.0848 0.0834 0.0758 0.0700	$\begin{array}{c} 0.0833\\ 0.0806\\ 0.0802\\ 0.0793\\ 0.0782\\ 0.0772\\ 0.0731\\ 0.0682\\ 0.0671\\ 0.0596\end{array}$

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0623	3882	1223	31	Pass
0.0646	3448	1074	31	Pass
0.0669	3080	966	31	Pass
0.0692	2787	859	30	Pass
0.0715	2515	769	30	Pass
0.0739	2297	686	29	Pass
0.0762	2051	602	29	Pass
0.0785	1896	532	28	Pass
0.0808	1739	466	26	Pass
0.0831	1593	426	26	Pass
0.0854	1469	371	25	Pass
0.0877	1346	339	25	Pass
0.0900	1234	308	24	Pass
0.0923	1135	279	24	Pass
0.0947	1031	258	25	Pass
0.0970	956	233	24	Pass
0.0993	881	213	24	Pass
0.1016	818	193	23	Pass
0.1039	760	180	23	Pass
0.1062	725	163	22	Pass
0.1085	681	149	21	Pass
0.1108	641	140	21	Pass
0.1132	605	129	21	Pass
0.1155	568	116	20	Pass
0.1178	538	111	20	Pass
0.1201	506	102	20	Pass
0.1224	475	91	19	Pass
0.1247	457	81	17	Pass
0.1270	425	79	18	Pass
0.1293	398	77	19	Pass
0.1316	375	70	18	Pass
0.1340	361	68	18	Pass
0.1363	346	64	18	Pass
0.1386	332	64	19	Pass
0.1409	321	61	19	Pass
0.1432	305	56	18	Pass
0.1455	291	51	17	Pass
0.1478	272	43	15	Pass
0.1501	257	40	15	Pass
0.1524	249	40	16	Pass
0.1548	237	36	15	Pass
0.1571	226	35	15	Pass
0.1594	216	33	15	Pass
0.1617	207	32	15	Pass
0.1640	194	27	13	Pass
0.1663	183	24	13	Pass
0.1686	166	20	12	Pass
0.1709	159	20	12	Pass
0.1732	153	18	11	Pass
0.1756	141	16	11	Pass
0.1779	128	14	10	Pass
0.1802	121	12	9	Pass
0.1825	114	12	10	Pass

0.1848	102	11	10	Pass
0.1871	97	11	11	Pass
0.1894	92	11	11	Pass
0.1917	86	11	12	Pass
0.1941	81	10	12	Pass
0.1964	75	10	13	Pass
0.1987	71	10	14	Pass
0.2010	68	10	14	Pass
0.2033	62	10	16	Pass
0.2056	56	10	17	Pass
0.2079	54	9	16	Pass
0.2102	52	9	17	Pass
0.2125	47	9	19	Pass
0.2149	44	9	20	Pass
0.2172	44	0	10	Pass Dass
0.2195	43	0 8	10	Pass Dass
0.2210	42	0 8	19	Pass Dass
0.2241	34	0 8	20	Pass Dass
0.2204	32	7	23	Pass
0.2207	29	6	20	Pass
0.2333	25	6	20	Pass
0.2357	24	6	25	Pass
0.2380	22	6	27	Pass
0.2403	20	õ	30	Pass
0.2426	19	6	31	Pass
0.2449	17	6	35	Pass
0.2472	16	6	37	Pass
0.2495	16	6	37	Pass
0.2518	15	5	33	Pass
0.2541	12	5	41	Pass
0.2565	11	5	45	Pass
0.2588	11	5	45	Pass
0.2611	10	3	30	Pass
0.2634	10	3	30	Pass
0.2657	10	3	30	Pass
0.2680	10	3	30	Pass
0.2703	9	3	33	Pass
0.2726	8	3	37	Pass
0.2749	8	3	37	Pass
0.2773	8	3	37	Pass
0.2796	1	3	42	Pass
0.2019	ю С	う 2	5U	Pass
0.2042	0	ა 2	00 60	Pass
0.2000	5	3 2	50	Pass
0.2000	4 1	∠ 2	50	Fass Dace
0.2011	-	<u> </u>	50	1 033
Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0.0294 acre-feetOn-line facility target flow:0.0394 cfs.Adjusted for 15 min:0.0394 cfs.Off-line facility target flow:0.0222 cfs.Adjusted for 15 min:0.0222 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Passed

POC 2

+ Predeveloped x Mit

x Mitigated

Predeveloped Landuse Totals for POC #2Total Pervious Area:5.51Total Impervious Area:0.095

Mitigated Landuse Totals for POC #2 Total Pervious Area: 2.744 Total Impervious Area: 5.514

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2

Return Period	FIOW(CTS)
2 year	0.080775
5 year	0.121803
10 year	0.153039
25 year	0.197279
50 year	0.233804
100 year	0.273478

Flow Frequency Return Periods for Mitigated. POC #2

Return Period	Flow(cts)
2 year	0.040262
5 year	0.077617
10 year	0.115863
25 year	0.185884
50 year	0.258825
100 year	0.354766
•	

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

Ical	i ieuevelopeu	imitiya
1949	0.041	0.031
1950	0.094	0.041
1951	0.089	0.036
1952	0.066	0.030
1953	0.063	0.030
1954	0.175	0.040
1955	0.135	0.541
1956	0.109	0.715
1957	0.119	0.037
1958	0.103	0.039
1959	0.087	0.037

1960 1961	0.077 0.109	0.033 0.041
1962	0.084	0.029
1964	0.071	0.033
1966	0.043	0.031
1967	0.106	0.036
1968	0.107	0.039
1909	0.082	0.035
1971	0.112	0.079
1972	0.081	0.031
1973	0.038	0.038
1975	0.063	0.032
1976	0.063	0.037
1978	0.030	0.029
1979	0.141	0.029
1980	0.070	0.031
1982	0.084	0.039
1983	0.099	0.037
1984 1985	0.075	0.044
1986	0.282	0.049
1987	0.102	0.045
1988 1989	0.063	0.037
1990	0.078	0.037
1991	0.088	0.038
1992	0.065	0.036
1994	0.038	0.036
1995	0.077	0.042
1996	0.183	0.045
1998	0.050	0.035
1999	0.077	0.044
2000	0.087	0.038
2002	0.074	0.049
2003	0.049	0.032
2004	0.071	0.039
2006	0.177	0.402
2007	0.155	0.075
2009	0.065	0.035

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

i (ann)	110001010000	minigato
1	0.3054	0.7148
2	0.2824	0.6613
3	0.1834	0.5412
4	0.1768	0.4022

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	0.1746 0.1635 0.1548 0.1407 0.1349 0.1229 0.1225 0.1191 0.1117 0.1094 0.1086 0.1072 0.1062 0.1062 0.1026 0.1016 0.0993 0.0944 0.0887 0.0883 0.0868 0.0868 0.0867 0.0842 0.0842 0.0842 0.0842 0.0841 0.0815 0.0811 0.0779 0.0769 0.0768 0.0768	0.0793 0.0746 0.0745 0.0493 0.0487 0.0482 0.0453 0.0453 0.0442 0.0435 0.0410 0.0410 0.0410 0.0410 0.0410 0.0396 0.0395 0.0392 0.0387 0.0381 0.0375 0.0368 0.0367
34 35 36 37 38 39 40 41 42 43 44 43 44 45 46 47 48	0.0754 0.0744 0.0739 0.0723 0.0715 0.0711 0.0701 0.0700 0.0697 0.0663 0.0654 0.0635 0.0634 0.0630	0.0362 0.0362 0.0361 0.0360 0.0353 0.0352 0.0352 0.0348 0.0338 0.0332 0.0332 0.0325 0.0316 0.0314
49 50 51 52 53 54 55 56 57 58 59 60 61	0.0625 0.0617 0.0599 0.0584 0.0523 0.0497 0.0485 0.0429 0.0419 0.0407 0.0380 0.0360 0.0242	0.0309 0.0308 0.0307 0.0307 0.0299 0.0299 0.0292 0.0290 0.0290 0.0281 0.0281 0.0280 0.0271 0.0215

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0404	15841	14827	93	Pass
0.0423	14065	9899	70	Pass
0.0443	12495	6047	48	Pass
0.0462	11163	4667	41	Pass
0.0482	10016	4132	41	Pass
0.0502	9000	3871	43	Pass
0.0521	8089	3773	46	Pass
0.0541	7270	3640	50	Pass
0.0560	6530	3499	53	Pass
0.0580	5843	3379	57	Pass
0.0599	5236	3253	62	Pass
0.0619	4691	3121	66	Pass
0.0638	4233	2992	70	Pass
0.0658	3831	2834	73	Pass
0.0677	3450	2682	77	Pass
0.0697	3131	2488	79	Pass
0.0716	2834	2218	78	Pass
0.0736	2556	2032	79	Pass
0.0756	2334	1862	79	Pass
0.0775	2141	1588	74	Pass
0.0795	1997	1237	61	Pass
0.0814	1853	999	53	Pass
0.0834	1713	690	40	Pass
0.0853	1579	456	28	Pass
0.0873	1463	426	29	Pass
0.0892	1361	394	28	Pass
0.0912	1265	348	27	Pass
0.0931	1196	336	28	Pass
0.0951	1135	332	29	Pass
0.0970	1086	328	30	Pass
0.0990	1041	325	31	Pass
0.1010	989	322	32	Pass
0.1029	940	319	33	Pass
0.1049	900	316	35	Pass
0.1068	845	313	37	Pass
0.1088	806	312	38	Pass
0.1107	755	305	40	Pass
0.1127	718	304	42	Pass
0.1146	687	299	43	Pass
0.1166	664	296	44	Pass
0.1185	628	288	45	Pass
0.1205	609	284	46	Pass
0.1224	590	281	47	Pass
0.1244	563	276	49	Pass
0.1264	538	274	50	Pass
0.1283	521	266	51	Pass
0.1303	501	260	51	Pass
0.1322	486	252	51	Pass
0.1342	470	247	52	Pass
0.1361	454	244	53	Pass
0.1381	443	239	53	Pass
0.1400	428	232	54	Pass
0.1420	408	229	56	Pass

0.1439	395	222	56	Pass
0.1459	376	219	58	Pass
0.1478	356	212	59	Pass
0.1498	336	207	61	Pass
0.1517	326	204	62	Pass
0.1537	314	202	64	Pass
0.1557	302	199	65	Pass
0.1576	294	195	66	Pass
0.1596	284	193	67	Pass
0.1615	274	189	68	Pass
0.1635	266	184	69	Pass
0.1654	259	180	69	Pass
0.1674	250	180	72	Pass
0.1693	245	177	72	Pass
0.1713	240	175	12	Pass
0.1752	230	174	73	Pass
0.1752	230	165	74	Pass
0.1701	223	163	73	Pass Dass
0.1791	220	150	74	Pass
0.1011	213	156	74 74	Pass
0.1850	203	150	73	Pass
0.1869	200	148	74	Pass
0.1889	196	146	74	Pass
0.1908	193	143	74	Pass
0.1928	188	139	73	Pass
0.1947	181	134	74	Pass
0.1967	176	132	75	Pass
0.1986	171	127	74	Pass
0.2006	167	127	76	Pass
0.2025	160	126	78	Pass
0.2045	156	125	80	Pass
0.2065	148	124	83	Pass
0.2084	144	122	84	Pass
0.2104	139	117	84	Pass
0.2123	135	113	83	Pass
0.2143	132	112	84	Pass
0.2162	129	111	86	Pass
0.2182	124	110	88	Pass
0.2201	122	110	90	Pass
0.2221	120	109	90	Pass
0.2240	115	107	93	Pass
0.2200	109	100	97	Pass
0.2219	100	103	91	Pass
0.2299	103	101	90 100	rass Doce
0.2319	Q/	90	100	rass Daee
0.2000	34	33	100	1 233

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #2On-line facility volume:0.0696 acre-feetOn-line facility target flow:0.0352 cfs.Adjusted for 15 min:0.0352 cfs.Off-line facility target flow:0.0237 cfs.Adjusted for 15 min:0.0237 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Vault 1 POC		614.71				34.67			
StormTech 2 POC		46.11				0.00			
Total Volume Infiltrated		660.82	0.00	0.00		32.25	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 3

POC #3 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	Predev-N 13.42ac				
7	Upstream-N				
	Predev-S 2 4.93ac				
	Upstream-S				
\$	Predev_Drive 2 G 0.58ac	9			

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 3 0 START 1948 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 211217_Vault Sizing.wdm MESSU 25 Pre211217_Vault Sizing.MES 27 Pre211217_Vault Sizing.L61 Pre211217_Vault Sizing.L62 POC211217_Vault Sizing1.dat POC211217_Vault Sizing2.dat 28 30 31 END FILES OPN SEQUENCE INDELT 00:15 INGRP PERLND 11 TMPLND 2 COPY 501 COPY 502 DISPLY 1 2 DISPLY END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 30 9 31 9 Predev-N 1 MAX 1 2 2 Predev-S MAX 1 2 31 9 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 1 501 1 1 502 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 11 C, Forest, Mod 1 27 0 1 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

 11
 0
 0
 1
 0
 0
 0
 0
 0

 END ACTIVITY

PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********* 11 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 11
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2 <PLS >PWATER input info: Part 2***# - # ***FORESTLZSNINFILTLSURSLSURKVARYAGWRC1104.50.084000.10.50.996 <PLS > 11 END PWAT-PARM2 PWAT-PARM3

 PWAT-PARMS

 <PLS >
 PWATER input info: Part 3

 # - # ***PETMAX
 PETMIN

 11
 0
 0

 2
 0
 2

 * * * INFILD DEEPFR BASETP AGWETP 2 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > * * * PWATER input info: Part 4 INTFW IRC LZETP *** 6 0.5 0.7
 # #
 CEPSC
 UZSN
 NSUR

 11
 0.2
 0.5
 0.35
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1 GWVS 11 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** in out *** 2 ROADS/MOD 1 1 27 0 1 END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** 2 0 0 1 0 0 0 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR
 # # ATMP SNOW IWAT
 SLD
 IWG IQAL

 2
 0
 0
 4
 0
 0
 1
 9
 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags ***
 # # CSNO RTOP
 VRS
 VNN RTLI

 2
 0
 0
 0
 0
 0
 END IWAT-PARM1 IWAT-PARM2 IWATER input info: Part 2*LSURSLSURNSURRETSC4000.050.10.08 <PLS > * * * # - # *** 2 END IWAT-PARM2

IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN 2 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 2 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-Source-> <Name> # <-factor-> <Name> # Tbl# *** Predev-N*** 3.42 COPY 501 12 3.42 COPY 501 13 PERLND 11 PERLND 11 Predev-S*** 4.93COPY502124.93COPY50213 perlnd 11 PERLND 11 Upstream-N*** COPY 501 15 IMPLND 2 0.277 Upstream-S*** 0.095 COPY 502 IMPLND 2 15 Predev Drive G*** COPY 502 12 COPY 502 13 PERLND 11 PERLND 11 U.58 0.58 0.58 ******Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY 2 INPUT <Name> # # *** DISPLY 1 INPUT TIMSER 1 DISPLY 2 INPUT TIMSER 1 TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO Name Nexits Unit Systems Printer * * * RCHRES # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section

HYDR-PARM2
 # - #
 FTABNO
 LEN
 DELTH
 STCOR
 KS
 DB50

 <----><----><----><----><----><---->

 END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * # - # *** VOL Initial value of COLIND Initial value of OUTDGT "*** ac-ft for each possible exit for each possible exit
<----><---> *** <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name># <Name># tem strg<-factor->strg<Name># #<Name>WDM2PRECENGL0.8PERLND1999EXTNLPRECWDM2PRECENGL0.8IMPLND1999EXTNLPRECWDM1EVAPENGL0.76PERLND1999EXTNLPETINPWDM1EVAPENGL0.76IMPLND1999EXTNLPETINP <Name> # # *** END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # </Name> # #<-factor->strg <Name> # <Name> tem strg strg*** COPY501 OUTPUT MEAN148.4WDM501 FLOWENGLREPLCOPY502 OUTPUT MEAN148.4WDM502 FLOWENGLREPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->*** <Name> <Name> # #<-factor-> <Name> <Name> # #*** MASS-LINK 12 PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END HYDR-PARM1

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 START 1948 10 01 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 211217_Vault Sizing.wdm Mit211217_Vault Sizing.MES MESSU 25 Mit211217_Vault Sizing.L61 Mit211217_Vault Sizing.L62 POC211217_Vault Sizing1.dat POC211217_Vault Sizing2.dat 27 28 30 31 END FILES OPN SEQUENCE INDELT 00:15 INGRP 14 PERLND 4 IMPLND IMPLND 9 2 IMPLND 1 RCHRES 2 RCHRES COPY 501 COPY 2 COPY 502 602 COPY 1 DISPLY DISPLY 2 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Dev-N StormTech 2 1 MAX 1 2 30 9 2 1 2 31 MAX END DISPLY-INFO1 END DISPLY COPY TIMESERIES NMN *** # - # NPT 1 1 1 501 1 1 2 1 1 502 1 1 602 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out C, Pasture, Mod 14 1 1 1 1 27 0 END GEN-INFO

9

*** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 14 0 0 1 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 14
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t END PWAT-PARM1 PWAT-PARM2 <PLS > PWATER input info: Part 2 * * * # - # ***FOREST LZSN INFILT L4 0 4.5 0.06 LSUR SLSUR KVARY AGWRC 400 0.1 0.5 0.996 14 END PWAT-PARM2 PWAT-PARM3 PWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP 14 0 0 2 2 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * * INTFW IRC LZETP ***
 # #
 CEPSC
 UZSN
 NSUR

 14
 0.15
 0.4
 0.3
 0.4 6 0.5 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS # -AGWS GWVS 14 0 0 0 0 2.5 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 1 1 1 27 0 1 1 1 27 0 1 1 1 27 0 1 1 1 27 0 4 ROOF TOPS/FLAT 0 9 SIDEWALKS/MOD 2 ROADS/MOD END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL * * * 4 0 0 1 0 0 0 9 2 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR

 # - # ATMP SNOW IWAT SLD IWG IQAL

 4
 0
 0
 4
 0
 0
 1
 9

 9
 0
 0
 4
 0
 0
 1
 9

2 0 4 0 0 0 1 9 0 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI * * * 0 0 0 4 0 0 9 0 0 0 0 0 2 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 * * * IWATER input info: Part 2 <PLS > # - # *** LSUR SLSUR NSUR RETSC 4 400 0.01 0.1 0.1 g 400 0.05 0.1 0.08 0.1 400 0.05 0.08 2 END IWAT-PARM2 IWAT-PARM3 * * * IWATER input info: Part 3 <PLS > # - # ***PETMAX PETMIN 0 4 0 9 0 0 2 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 0 0 4 9 0 0 2 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <-Source-> <--Area--> <-Target-> MBLK * * * * * * <-factor-> <Name> # <Name> # Tbl# Dev-S*** PERLND 14 2.113 RCHRES 2 2 PERLND 14 2.113 RCHRES 2 3 2 5 IMPLND 2 2.18 RCHRES 4 1.849 RCHRES 2 5 IMPLND 5 IMPLND 9 0.606 RCHRES 2 Upstream-S*** IMPLND 2 0.309 RCHRES 2 5 Offsite-Dev S*** 0.377 PERLND 14 RCHRES 2 2 PERLND 14 0.377 RCHRES 3 2 IMPLND 2 0.185 RCHRES 2 5 Drive G_Dev*** PERLND 14 0.195 RCHRES 1 2 perlnd 14 0.195 RCHRES 1 3 2 0.158 5 IMPLND RCHRES 1 IMPLND 4 0.227 RCHRES 1 5 Dev-N*** PERLND 14 0.36 COPY 501 12 PERLND 14 0.36 COPY 501 13 4 0.195 COPY 501 15 IMPLND IMPLND 9 0.015 COPY 501 15 Upstream-N*** 0.062 501 15 IMPLND 2 COPY Bypass-N*** IMPLND 2 0.043 COPY 501 15 Bypass-S*** 502 PERLND 14 0.059 COPY 12 PERLND 14 0.059 COPY 602 12 PERLND 14 0.059 13 COPY 502

PERLND	14					0.05	9	CO	ΡY	602	13				
PERLND *****RC PERLND IMPLND IMPLND PERLND PERLND PERLND PERLND PERLND IMPLND PERLND IMPLND PERLND RCHRES	14 outing** 14 2 4 9 14 2 14 2 14 14 2 4 14 2 4	****				0.05 2.11 1.84 0.60 2.11 0.30 0.37 0.18 0.37 0.19 0.15 0.22 0.19	9 38963975758751		54 54 54 54 54 54 54 55 54 55 55 55 55 5	602 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 12 15 15 13 15 13 12 15 13 12 15 13 17				
RCHRES END SCHI NETWORK <-Volume <name> COPY ! COPY !</name>	1 EMATIC =-> <-G1 # 501 OUTE 502 OUTE	rp> < < < M TUS M TUS	-Meml Name: EAN EAN	Der->< > # #< 1 1 1 1	<mu <-fac 48 48</mu 	lt tor- .4 .4	l >Tra >str	CO in <-' ig <n DI DI</n 	PY Farge ame> SPLY SPLY	502 et vol # 1 2	16 .s> <- # IN IN	Grp> PUT PUT	<-Membe <name> TIMSER TIMSER</name>	er-> # # 1 1	* * * * * *
<-Volume <name> END NET</name>	e-> <-G1 # WORK	2 < c <u>r</u> p> 2	-Meml Name:	oer->< > # #<	<mu <-fac</mu 	lt tor-	>Tra >str	n <-' g <n< td=""><td>Targe ame></td><td>et vol #</td><td>.s> <- #</td><td>Grp></td><td><-Membe <name></name></td><td>≥r-> # #</td><td>* * * * * *</td></n<>	Targe ame>	et vol #	.s> <- #	Grp>	<-Membe <name></name>	≥r-> # #	* * * * * *
GEN-II RCHI # - 1 2 END GI *** Se	NFO RES #< Storn Vault EN-INFO ection F	Na nTech : 1 RCHRE	me 2 S***		Nexi -><	ts -> U 1 2	Uni ser 1 1	t Sy: T-se in 1 1	stems ries out 1	8 Pr Engl 2 28 28	inter Metr 0 0 0	LKFG 1 1	•		* * * * * * * * *
ACTIV: <pls # - 1 2 END AC</pls 	ITY S > **** # HYF(] CTIVITY	**** G ADF	**** G CNI 0 0	* Acti FG HTE 0 0	ve S G SD 0 0	ecti FG G 0 0	ons QFG 0 0	**** OXFG 0 0	* * * * * NUF((5 **** 5 PKFG) C) C	:***** 9 PHFG) 0) 0	* * * * *	****		
PRINT- <pls # - 1 2 END PI</pls 	-INFO S > **** # HYDF 2 RINT-INF	* * * * * R ADC I I FO	**** A COI 0 0	***** NS HE# 0 0	Prin AT S O O	t-fl ED 0 0	ags GQL 0 0	**** OXRX 0 0	* * * * * NUTF ((2 ***** 2 PLNK) C) C	2 * * * * * 2 PHCB 0 0 0 0	PIVL PIVL 1 1	PYR PYR 9 9	* * * * *	* * * *
HYDR-1 RCHI # -	PARM1 RES Fla # VC FG	ags f Al A FG F	or ea 2 A3 G FG * *	ach HY ODFV poss	IDR S VFG f sible	ecti or e ex	on ach it	* * *	DDGTE possi	G for ble	each exit		FUNCT possibi	for e le ez	*** each xit
1 2 END HY	0 0 YDR-PARN	1 1 11	0 0	4 4	U 5	0 0	0		0	0 0	0 0		22 22	2 2	2 2
HYDR-1 # - <	PARM2 # I	TABN	0	LE	EN -><	DE	LTH ><	(STCOF	ر •<	KS	<	DB50		* * * * * *
1 2			1 2	0.0 0.0)5)2		0.0		3.0 0.0))	0.5 0.5		0.0		

END H	YDR-	PARM2										
HYDR-	INIT			c	1							باد باد باد
RCH # _	RES #	Initial c	onditions	tor e 1 va	ach H	YDR S of CO	ectio	on Tritia	1 172	1110	of OU	*** TDCT
# -	*	** ac-ft	for eac	⊥ va h pos	sible	exit		for eac	⊥ va h pos	sible	exit	IDGI
<	><	>	<><	><	><	><	>	*** <><	><	><	><	>
1		0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2		0	4.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
END H END RCH	YDR- RES	INIT										
SPEC-AC	TION	S										
END SPE	C-AC	TIONS										
FTABLES		_										
FTABL	E	2										
91 De	5 nth	Area	Volume	Out f	10w1	∩ut f	10w2	Velocity	Trav	ol Ti	m o ***	
De (ft)	(acres)	(acre-ft)	(cf	s)	(C	fs)	(ft/sec)	IIAV (M	inute	s)***	
0.00Ò	000	0.193388	0.000000	0.00	0000	0.00	0000	(,,	(
0.172	222	0.193388	0.033306	0.00	4225	0.00	7800					
0.344	444	0.193388	0.066612	0.00	5975	0.00	7800					
0.516	667 000	0.193388	0.099917	0.00	7318	0.00	7800					
0.000	009 111	0.193388	0.133223 0 166529	0.00	0450 9447	0.00	7800					
1.033	333	0.193388	0.199835	0.01	0349	0.00	7800					
1.205	556	0.193388	0.233140	0.01	1178	0.00	7800					
1.377	778	0.193388	0.266446	0.01	1950	0.00	7800					
1.550	000	0.193388	0.299752	0.01	2675	0.00	7800					
1 004	222	0.193388	0.333058	0.01	3360	0.00	7800					
2 066	444 667	0.193388	0.300304	0.01	4012	0.00	7800					
2.238	889	0.193388	0.432975	0.01	5233	0.00	7800					
2.411	111	0.193388	0.466281	0.01	5808	0.00	7800					
2.583	333	0.193388	0.499587	0.01	6363	0.00	7800					
2.755	556	0.193388	0.532893	0.01	6900	0.00	7800					
2.927	778	0.193388	0.566198	0.01	7420	0.00	7800					
3.100	222	0.193388	0.5399504	0.01	8416	0.00	7800					
3.444	444	0.193388	0.666116	0.01	8894	0.00	7800					
3.616	667	0.193388	0.699421	0.01	9361	0.00	7800					
3.788	889	0.193388	0.732727	0.01	9816	0.00	7800					
3.961	111	0.193388	0.766033	0.02	0262	0.00	7800					
4.133	333	0.193388	0.799339	0.02	0698	0.00	7800					
4.305	550 778	0.193388	0.832645	0.02	1543	0.00	7800					
4.650	000	0.193388	0.899256	0.02	1953	0.00	7800					
4.822	222	0.193388	0.932562	0.02	2356	0.00	7800					
4.994	444	0.193388	0.965868	0.02	2752	0.00	7800					
5.166	667	0.193388	0.999174	0.02	3141	0.00	7800					
5.338	889	0.193388	1.032479	0.02	3523	0.00	7800					
5.511	777 777	0.193388	1 099091	0.02	4270	0.00	7800					
5.855	556	0.193388	1.132397	0.02	4635	0.00	7800					
6.027	778	0.193388	1.165702	0.02	4995	0.00	7800					
6.200	000	0.193388	1.199008	0.02	5349	0.00	7800					
6.372	222	0.193388	1.232314	0.02	5699	0.00	7800					
6.544	444	0.193388	1.265620	0.02	6044	0.00	7800					
6 888	889 889	0.193388	1 332231	0.02	6384 6721	0.00	7800					
7.061	111	0.193388	1.365537	0.02	7053	0.00	7800					
7.233	333	0.193388	1.398843	0.02	7380	0.00	7800					
7.405	556	0.193388	1.432149	0.02	7704	0.00	7800					
7.577	778	0.193388	1.465455	0.02	8025	0.00	7800					
7.750	000	0.193388	1.498760	0.02	8341	0.00	7800					
/.922	222 111	0.193388	1.532066	0.02	8655 00 <i>61</i>	0.00	1800					
8 266	444 667	0.193388 0 193388	1 598678	0.02	0904 9271	0.00	7800 7800					
8.438	889	0.193388	1.631983	0.02	9574	0.00	7800					
8.611	111	0.193388	1.665289	0.02	9874	0.00	7800					
8.783	333	0.193388	1.698595	0.03	0172	0.00	7800					

8.955556 9.127778 9.300000 9.472222 9.644444 9.816667 9.988889 10.16111 10.33333 10.50556 10.67778 10.85000 11.02222 11.19444 11.36667 11.53889 11.71111 11.88333 12.05556 12.22778 12.40000 12.57222 12.74444 12.91667 13.08889 13.26111 13.43333 13.60556 13.77778 13.95000 14.12222 14.29444 14.63889 14.111 14.98333 15.15556 15.32778 15.50000 END FTABI	0.193388 0.1938	1.731901 1.765207 1.798512 1.831818 1.865124 1.898430 1.931736 1.965041 1.998347 2.031653 2.064959 2.098264 2.131570 2.164876 2.198182 2.231488 2.264793 2.298099 2.331405 2.364711 2.398017 2.464628 2.497934 2.531240 2.564545 2.597851 2.664463 2.697769 2.731074 2.764380 2.797686 2.830992 2.864298 2.897603 2.997521	0.030466 0.030758 0.031046 0.031333 0.031616 0.031897 0.032176 0.032452 0.032997 0.032997 0.033267 0.033534 0.034062 0.034062 0.034839 0.034839 0.035600 0.035849 0.035600 0.035849 0.036097 0.036344 0.036097 0.036344 0.036589 0.036832 0.036832 0.036832 0.036832 0.0367503 0.057503 0.060728 0.060728 0.063602 0.068654 0.070933 0.073086 0.075134 1.047094 2.897944 4.719878	0.007800 0.00	
66 4 Depth (ft) 0.000000 0.083333 0.166667 0.250000 0.333333 0.416667 0.500000 0.583333 0.666667 0.750000 0.83333 0.916667 1.000000 1.33333 1.166667 1.500000 1.583333 1.416667 1.500000 1.583333 1.916667 2.000000 2.083333	Area (acres) 0.038504	Volume (acre-ft) 0.000000 0.001283 0.002567 0.003850 0.005134 0.006417 0.007701 0.008984 0.010267 0.011551 0.014396 0.017228 0.020050 0.022864 0.025667 0.028460 0.031244 0.036775 0.039522 0.042257 0.044978 0.047684 0.050376 0.053051 0.055711	Outflowl (cfs) 0.000000 0.001958 0.002770 0.003392 0.003917 0.004379 0.004797 0.005182 0.005539 0.005875 0.006193 0.006495 0.006784 0.007328 0.007585 0.007834 0.007585 0.007834 0.008309 0.008537 0.008758 0.008758 0.008975 0.009186 0.009392 0.009594 0.009792	Velocity (ft/sec)	Travel Time*** (Minutes)***

2.166667 0.038504 0.058352 0. 2.250000 0.038504 0.060975 0. 2.33333 0.038504 0.063579 0. 2.416667 0.038504 0.066162 0. 2.500000 0.038504 0.068723 0. 2.583333 0.038504 0.071262 0. 2.666667 0.038504 0.073777 0. 2.750000 0.038504 0.078730 0. 2.916667 0.038504 0.078730 0. 3.000000 0.038504 0.083572 0. 3.083333 0.038504 0.085946 0. 3.166667 0.038504 0.082899 0. 3.250000 0.038504 0.092869 0. 3.416667 0.038504 0.092869 0. 3.416667 0.038504 0.092869 0. 3.583333 0.038504 0.097288 0. 3.583333 0.038504 0.097288 0. 3.583333 0.038504 0.097288 0. 3.583333 0.038504 0.101526 0. 3.750000 0.038504 0.103565 0. 3.83333 0.038504 0.103565 0. 3.916667 0.038504 0.103565 0. 3.916667 0.038504 0.103565 0. 3.916667 0.038504 0.102286 0. 4.083333 0.038504 0.10228 0. 4.083333 0.038504 0.10228 0. 4.083333 0.038504 0.102546 0. 3.916667 0.038504 0.102546 0. 3.916667 0.038504 0.10228 0. 4.083333 0.038504 0.111036 0. 4.166667 0.038504 0.111036 0. 4.166667 0.038504 0.112625 0. 4.250000 0.038504 0.112625 0. 4.250000 0.038504 0.112625 0. 4.250000 0.038504 0.112625 0. 4.416667 0.038504 0.122058 0. 4.416667 0.038504 0.122058 0. 4.83333 0.038504 0.122058 0. 4.80333 0.038504 0.122058 0. 4.80	009986 010176 010363 010546 010727 010904 011079 011250 011420 011586 011751 011913 012073 012230 012386 012540 012692 012842 012991 013138 013283 013426 013568 013709 013848 013986 014122 014258 014391 014524 014656 014786 269207 718475 232725 698764 028505 218879 421237 587451				
EXT SOURCES<-Volume-> <member>SsysSgap<mul< td=""><name>#tem strg<-fact</name></mul<></member>	t>Tran or->strg	<-Target vols <name> # PERLND 1 99 IMPLND 1 99 PERLND 1 99 IMPLND 1 99</name>	\$> <-Grp> <- # <1 99 EXTNL PI 99 EXTNL PI 99 EXTNL PI 99 EXTNL PI	-Member Name> # REC REC ETINP ETINP	> *** # ***
END EXT SOURCES					
EXT TARGETS <-Volume-> <-Grp> <-Member-> <mul <name> # <name> # #<-fact COPY 1 OUTPUT MEAN 1 1 4 COPY 501 OUTPUT MEAN 1 1 4 COPY 601 OUTPUT MEAN 1 1 4 RCHRES 2 HYDR RO 1 1 RCHRES 2 HYDR O 2 1 RCHRES 2 HYDR O 2 1 RCHRES 2 HYDR STAGE 1 1 COPY 2 OUTPUT MEAN 1 1 4 COPY 502 OUTPUT MEAN 1 1 4 COPY 602 OUTPUT MEAN 1 1 4 RCHRES 1 HYDR RO 1 1 RCHRES 1 HYDR STAGE 1 1 END EXT TARGETS</name></name></mul 	t>Tran - or->strg - 8.4 1 8.4 1 8.4 1 1 1 1 1 1.8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<-Volume-> <m <name> # <n WDM 701 FI WDM 801 FI WDM 901 FI WDM 1000 FI WDM 1002 FI WDM 1003 FI WDM 1001 ST WDM 702 FI WDM 802 FI WDM 902 FI WDM 902 FI WDM 1004 FI WDM 1005 ST</n </name></m 	Iember>TsysJame>terJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJJOWENGJ	s Tgap n strg L L L L L L L L L L L	Amd *** strg*** REPL REPL REPL REPL REPL REPL REPL REPL

MASS-LINK					
<volume> <-Grp> <name> MASS-LINK</name></volume>	<-Membe <name> 2</name>	r-> <mult> # #<-factor-></mult>	<target> <name></name></target>	<-Grp>	<-Member->*** <name> # #***</name>
PERLND PWATER END MASS-LINK	SURO 2	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 5	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	СОРҮ	INPUT	MEAN
MASS-LINK RCHRES ROFLOW	16		COPY	τνριιτ	MEAN
END MASS-LINK	16				
MASS-LINK RCHRES OFLOW END MASS-LINK	17 OVOL 17	1	COPY	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1951/ 7/31 24: 0 RCHRES : 2 RELERR STORS STOR MATIN MATDIF 0.00000 -2.424E-09 -1.902E-02 0.00000 0.0000E+00 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1967/ 8/31 24: 0 RCHRES : 2 RELERR MATDIF STORS STOR MATTN -8.887E-02 0.00000 0.0000E+00 0.00000 -2.301E-10 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

<section-header>

General Model Information

Project Name:	220121_88th ST_Frontage_Bypass_WQ
Site Name:	Carrik Court
Site Address:	
City:	
Report Date:	1/21/2022
Gage:	Everett
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2018/10/10
Version:	4.2.16

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Mod	acre 0.4552
Pervious Total	0.4552
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.4552
Element Flows To	

Element Flows To: Surface

Interflow

Groundwater

Mitigated Land Use

Basin 1 Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Mod	acre 0.0678
Pervious Total	0.0678
Impervious Land Use ROADS MOD SIDEWALKS MOD	acre 0.2586 0.1288
Impervious Total	0.3874
Basin Total	0.4552
Element Flows To: Surface	Interflow

Groundwater

Routing Elements Predeveloped Routing Mitigated Routing

Analysis Results POC 1

Predeveloped Landuse Totals for POC #1 Total Pervious Area: 0.4552 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.0678 Total Impervious Area: 0.3874

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.0056055 year0.00876610 year0.01073425 year0.01302750 year0.01459

0.016035

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.154236
5 year	0.207582
10 year	0.246432
25 year	0.299692
50 year	0.342498
100 year	0.388074
-	

Annual Peaks

100 year

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Preaevelopea	wiitigate
1949	0.001	0.155
1950	0.007	0.161
1951	0.005	0.200
1952	0.004	0.151
1953	0.003	0.175
1954	0.010	0.238
1955	0.010	0.194
1956	0.008	0.085
1957	0.009	0.129
1958	0.006	0.342
1959 1960	0.006 0.005	0.143 0.144
--------------	----------------	----------------
1961 1962	0.006 0.004	0.440 0.177
1963	0.005	0.173
1964	0.005	0.100
1965	0.008	0.135
1967	0.008	0.281
1968	0.008	0.144
1969	0.004	0.298
1971	0.007	0.154
1972	0.006	0.207
1973	0.003	0.168
1975	0.005	0.165
1976	0.004	0.120
1977	0.002	0.121
1979	0.008	0.188
1980	0.005	0.158
1981	0.004	0.122
1983	0.006	0.163
1984	0.005	0.149
1985	0.008	0.203
1987	0.007	0.179
1988	0.005	0.156
1989	0.003	0.137
1991	0.006	0.160
1992	0.005	0.150
1993 1994	0.003	0.120
1995	0.006	0.116
1996	0.013	0.195
1997 1998	0.023	0.167
1999	0.006	0.081
2000	0.003	0.346
2001	0.001	0.098
2003	0.004	0.146
2004	0.005	0.273
2005 2006	0.005	0.118
2007	0.010	0.161
2008	0.012	0.141
2009	0.005	0.118

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.02310.440300.02400.4403

4	0.0127	0.2985
5	0.0124	0.2812
6	0.0097	0.2730
7 8 9 10	0.0096 0.0096 0.0089 0.0082	0.2070 0.2038 0.2031
11	0.0082	0.2004
12	0.0079	0.1997
13	0.0078	0.1979
14	0.0077	0.1951
15	0.0071	0.1937
16	0.0071	0.1875
17	0.0066	0.1794
18	0.0065	0.1768
19	0.0064	0.1754
20	0.0062	0.1736
21	0.0061	0.1731
22	0.0061	0.1677
23 24 25 26	0.0081 0.0059 0.0059	0.1670 0.1649 0.1632 0.1615
27 28 29	0.0059 0.0057 0.0056	0.1616 0.1606 0.1597 0.1581
30	0.0056	0.1563
31	0.0055	0.1548
32	0.0054	0.1537
33	0.0054	0.1505
34	0.0053	0.1500
35	0.0053	0.1495
36 37 38 30	0.0048 0.0048 0.0047	0.1463 0.1442 0.1441 0.1422
40 41 42	0.0047 0.0047 0.0046 0.0045	0.1432 0.1407 0.1369 0.1358
43	0.0044	0.1352
44	0.0043	0.1337
45	0.0042	0.1292
46	0.0041	0.1291
47	0.0041	0.1240
48	0.0039	0.1218
49	0.0036	0.1216
50	0.0036	0.1209
51	0.0034	0.1201
52 53 54	0.0033 0.0033 0.0032	0.1197 0.1182 0.1177 0.1162
56 57 58	0.0032 0.0030 0.0030 0.0021	0.102 0.1058 0.1004 0.0976
59	0.0020	0.0916
60	0.0008	0.0847
61	0.0007	0.0806

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0028	21079	163090	773	Fail
0.0029	19222	159325	828	Fail
0.0030	17526	155796	888	Fail
0.0032	15956	152310	954	Fail
0.0033	14502	149101	1028	Fail
0.0034	13270	145957	1099	Fail
0.0035	12149	143155	1178	Fail
0.0036	11109	140482	1264	Fail
0.0038	10170	137958	1356	Fail
0.0039	9332	135669	1453	Fail
0.0040	8607	133573	1551	Fail
0.0041	7931	131456	1657	Fail
0.0042	7328	129488	1767	Fail
0.0044	6727	127584	1896	Fail
0.0045	6207	125745	2025	Fail
0.0046	5702	123927	2173	Fail
0.0040	5230	122130	2335	Fail
0.0047	4791	120376	2512	Fail
0.0040	4791	118622	2701	Fail
0.0045	4057	116075	2883	Fail
0.0051	3751	115328	2003	Fail
0.0052	3/7/	113660	3072	Fail
0.0053	3206	112035	3/0/	Fail
0.0054	2015	112033	3751	Fail
0.0055	2940	10495	2009	Fall
0.0057	2123	100009	2990 4222	Fall
0.0050	2041	107200	4222	Fall
0.0059	2303	100720	4430	Fall
0.0000	2240	104103	4033	Fall
0.0001	2120	102559	4037 5050	Fall
0.0003	2002	00650	5050	Fall
0.0004	1903	99050	5250	Fall
0.0005	1694	90190	57400	Fail
0.0000	1500	90720	5006	Fail
0.0007	1/96	93331	5330	Fail
0.0009	1400	02679	6606	Fail
0.0070	1004	92070	6012	Fall
0.0071	1021	91330	7100	Fall
0.0072	1201	90047	7190	Fall
0.0073	1201	00049	7597	Fall
0.0074	1110	96519	7721	Fail
0.0070	1075	95110	7049	Fall
0.0077	1075	00440	1940 0101	Fall
0.0070	1031	04379	0104	Fall
0.0079	993	00009	0009	Fall
0.0000	904	02201	0000	Fall
0.0002	929	01200	0744 9066	Fall
0.0003	090	70267	0900	Fall
0.0004	007 977	19201 78317	9249 0531	i all Foil
0.0000	022 701	10341 77107	900 I 0799	Fall
0.0000	191 757	11421	9100 10117	Fall
0.0000	730	76716	10117	i all Foil
0.0009	706	7/020	10343	i all Foil
0.0090	100	14009 72062	10000	Fall
0.0091	000	1 2902	10020	rall

0.0092	664 645	73150 72316	11016 11211	Fail Fail
0.0095	626	71546	11429	Fail
0.0096	607	70776	11659	Fail
0.0097	584	70048	11994	Fail
0.0098	567	69278	12218	Fall
0.0099	5/1	67867	12521	Fail
0.0101	527	67118	12735	Fail
0.0103	515	66391	12891	Fail
0.0104	505	65664	13002	Fail
0.0105	495	64958	13122	Fail
0.0107	483	64273	13307	Fail
0.0108	472	63632	13481	Fail
0.0109	459	63011	13727	Fail
0.0110	444	62348	14042	Fail
0.0111	428	61707	14417	Fall
0.0113	417	60381	14030	Fail
0.0115	388	59803	15413	Fail
0.0116	371	59161	15946	Fail
0.0117	355	58563	16496	Fail
0.0119	339	57985	17104	Fail
0.0120	325	57365	17650	Fail
0.0121	319	56830	17815	Fail
0.0122	307	56274	18330	Fail
0.0123	302	55696	18442	Fail
0.0124	293	50140 54594	10019	Fall
0.0120	207	54004	19010	Fail
0.0127	273	53515	19531	Fail
0.0129	268	52980	19768	Fail
0.0130	265	52445	19790	Fail
0.0132	262	51889	19804	Fail
0.0133	257	51333	19973	Fail
0.0134	253	50863	20103	Fail
0.0135	245	50306	20533	Fail
0.0130	242	49815	20584	Fall
0.0130	237	49323 18852	20011	Fail
0.0133	201	48381	21313	Fail
0.0141	224	47847	21360	Fail
0.0142	222	47398	21350	Fail
0.0144	220	46927	21330	Fail
0.0145	217	46456	21408	Fail
0.0146	211	46007	21804	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0.0321 acre-feetOn-line facility target flow:0.0546 cfs.Adjusted for 15 min:0.0546 cfs.Off-line facility target flow:0.0309 cfs.Adjusted for 15 min:0.0309 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

%	Basin 0.46ac	1			

Mitigated Schematic

%	Basin 0.46ac	1			

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END START 1948 10 01 END 3 0 2009 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 WDM 220121_88th ST_Frontage_Bypass_WQ.wdm MESSU 25 Pre220121_88th ST_Frontage_Bypass_WQ.MES 27 Pre220121_88th ST_Frontage_Bypass_WQ.L61 Pre220121_88th ST_Frontage_Bypass_WQ.L62 28 30 POC220121_88th ST_Frontage_Bypass_WQ1.dat END FILES OPN SEOUENCE INGRP 11 INDELT 00:15 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 1 2 30 MAX 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1)1 1 1 501 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 1 1 27 0 11 C, Forest, Mod 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** .1 0 0 1 0 0 0 0 0 0 0 0 0 0 11 END ACTIVITY PRINT-INFO END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 11
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t END PWAT-PARM1 PWAT-PARM2
 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 11
 0
 4.5
 0.08
 400
 0.1
 0.5
 0.996
 11 0 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILD110022-----0220 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * * INTFW IRC LZETP *** 6 0.5 0.7
 # #
 CEPSC
 UZSN
 NSUR

 11
 0.2
 0.5
 0.35
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 11
 0
 0
 0
 0
 2.5
 1
 GWVS 11 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 0.4552 COPY 501 12 0.4552 COPY 501 13 PERLND 11 PERLND 11 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Unit Systems Printer # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO <PLS > ********** Print-flags ********* PIVL PYR # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section # *** . *** ac-ft <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 0.8 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 0.8 IMPLND 1 999 EXTNL PREC <Name> # # *** WDM WDM

END IMPLND

WDM	1	EVAP	ENGL	С	.76		PERLND	1	999	EXTNL	PE:	LIND	
WDM	1	EVAP	ENGL	С	.76		IMPLND	1	999	EXTNL	PE:	CINP	
END EXT	SOU	JRCES											
EXT TARG	ETS	3											
<-Volume	->	<-Grp>	<-Member	r-><	Mu	ult>Tran	<-Volur	ne->	<mer< td=""><td>nber></td><td>Tsys</td><td>Tgap</td><td>Amd ***</td></mer<>	nber>	Tsys	Tgap	Amd ***
<name></name>	#		<name></name>	# #<	-fac	tor->strg	<name></name>	#	<nar< td=""><td>ne></td><td>tem</td><td>strg</td><td>strg***</td></nar<>	ne>	tem	strg	strg***
COPY 5 END EXT	01 TAF	OUTPUT RGETS	MEAN	1 1		48.4	WDM	501	FLO	V	ENGL		REPL
MASS-LIN	K												
<volume></volume>		<-Grp>	<-Member	r-><	Mu	lt>	<target< td=""><td>:></td><td></td><td><-Grp</td><td>> <-1</td><td>lembei</td><td><u>>***</u></td></target<>	:>		<-Grp	> <-1	lembei	<u>>***</u>
<name> MASS-L</name>	INF	ζ	<name> = 12</name>	# #<	-fac	tor->	<name></name>				<na< td=""><td>ame> ‡</td><td>‡ #***</td></na<>	ame> ‡	‡ #***
PERLND		PWATER	SURO		0.08	3333	COPY			INPUT	' MEA	AN	
END MA	SS-	-LINK	12										
MASS-L	INF	ζ	13										
PERLND		PWATER	IFWO		0.08	3333	COPY			INPUT	' MEZ	AN	
END MA	.SS-	-LINK	13										

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 START 1948 10 01 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> 26 WDM 220121_88th ST_Frontage_Bypass_WQ.wdm MESSU 25 Mit220121_88th ST_Frontage_Bypass_WQ.MES 27 Mit220121_88th ST_Frontage_Bypass_WQ.L61 Mit220121_88th ST_Frontage_Bypass_WQ.L62 28 30 POC220121_88th ST_Frontage_Bypass_WQ1.dat END FILES OPN SEOUENCE INGRP INDELT 00:15 14 PERLND 2 9 IMPLND TMPTIND COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Basin 1 1 2 30 1 9 MAX END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # -# * * * in out 1 14 1 27 0 C, Pasture, Mod 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********* .4 0 0 4 0 0 0 0 0 0 0 0 0 1 9 14

END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 14
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t END PWAT-PARM1 PWATER input info: Part 2***FORESTLZSNINFILTLSURSLSURKVARY^450.064000.10.5 PWAT-PARM2 <PLS > AGWRC # - # ***FOREST LZSN INFILT L4 0 4.5 0.06 14 0 0.996 END PWAT-PARM2 PWAT-PARM3 WAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILDDEEPFR1400220 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 PWATER input info: Part 4 * * * <PLS > INTFW 6 IRC LZETP 0.5 0.4 CEPSC UZSN NSUR 0.15 0.4 0.3 LZETP *** # - # 14 0.15 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 0 2.5 1 # GWVS 14 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # in out *** 1 1 1 27 0 1 1 1 27 0 2 ROADS/MOD 9 SIDEWALKS/MOD END GEN-INFO *** Section IWATER*** ACTIVITY

 # # ATMP SNOW IWAT SLD IWG IQAL

 2
 0
 0
 1
 0
 0

 9
 0
 0
 1
 0
 0
 0

 * * * END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR

 # - # ATMP SNOW IWAT
 SLD
 IWG IQAL

 2
 0
 0
 4
 0
 0
 1
 9

 9
 0
 0
 4
 0
 0
 1
 9

 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI * * * 2 9 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2

 <PLS >
 IWATER input info: Part 2

 # - # *** LSUR
 SLSUR
 NSUR

 2
 400
 0.05
 0.1

 9
 400
 0.05
 0.1

 <PLS > * * * RETSC 0.08 0.08

END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN 0 0 0 0 2 9 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS ∠ 0 9 ^ 0 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 0.0678COPY501120.0678COPY501130.2586COPY501150.1288COPY50115 perlnd 14 PERLND 14 IMPLND 2 IMPLND 9 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----- User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******* END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 KS DB50 # - # FTABNO LEN DELTH STCOR * * * <----><----><----><----> * * * END HYDR-PARM2

HYDR-INIT RCHRES Initial conditions for each HYDR section * * * <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # ____ <Name> # # *** 2 PRECENGL0.8PERLND1999EXTNLPREC2 PRECENGL0.8IMPLND1999EXTNLPREC WDM ENGL 0.8 ENGL 0.76 ENGL 0.76 IMPLND1999EXTNLPRECPERLND1999EXTNLPETINPIMPLND1999EXTNLPETINP WDM WDM 1 EVAP WDM 1 EVAP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg*** # <INGLAN 701 FLOW COPY 1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW D1 OUTPUT MEAN 1 1 48.4 WDM 801 FLOW ENGL REPL 501 OUTPUT MEAN ENGL COPY REPL END EXT TARGETS MASS-LINK Name> <Name> # #<-factor-> MASS-LINK 12 <-Grp> <-Member->*** <Volume> <-Grp> <-Member-><--Mult--> <Target> <Name> <Name> <Name> # #*** PERLND PWATER SURO COPY INPUT MEAN 0.083333 END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

APPENDIX C

LAND USE SPREADSHEET

Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

	Carrik Court-Snohomish												
	County		Impervious Till						Pervic	ous Till		Total SF	Total AC
DOC	Subbasin	Ro	ad	Ro	of	Side	walk	Pas	ture	La	wn		
PUC	Subbasiii	sf	ас	sf	ac	sf	ас	sf	ас	sf	ac		
	North	0	0	8512	0.195409	632	0.014509	15688	0.360147	0	0	24832	0.570064
1	Upstream North	5124	0.117631	0	0	0	0	0	0	0	0	5124	0.117631
L	Bypass North	1869	0.042906	0	0	0	0	0	0	0	0	1869	0.042906
	Total	5124	0.117631	8512	0.195409	632	0.014509	15688	0.360147	0	0	29956	0.687695
	South	98778	2.267631	62928	1.444628	26419	0.606497	101772	2.336364	0	0	289897	6.655119
	Upstream South	11078	0.254316	0	0	0	0	0	0	0	0	11078	0.254316
2	Offsite South	5178	0.118871	0	0	2858	0.065611	16443	0.377479	0	0	24479	0.561961
	Bypass South	9203	0.211272	0	0	5611	0.128811	2583	0.059298	0	0	17397	0.39938
	Total	115034	2.640817	62928	1.444628	29277	0.672107	118215	2.77314	0	0	325454	7.530693
	Drive F	6891	0.158196	12768	0.293113	1176	0.026997	8004	0.183747	0	0	28839	0.662052
2	Drive G	6891	0.158196	9880	0.226814	0	0	8505	0.195248	0	0	25276	0.580257
	Drive H	5419	0.124403	12768	0.293113	2799	0.064256	14516	0.333242	0	0	35502	0.815014
	Drive D	6044	0.138751	17024	0.390817	1745	0.04006	15767	0.361961	0	0	40580	0.931589
2	Drive J	5814	0.133471	14820	0.34022	1673	0.038407	17455	0.400712	0	0	39762	0.91281
2													
	Total	34709	0.796809	72189	1.657231	7519	0.172612	71859	1.649656	0	0	186276	4.276309
2	Commerical	25619	0.588131	18240	0.418733	6428	0.147567	14195	0.325872	0	0	64482	1.480303
	Total	25619	0.588131	18240	0.418733	6428	0.147567	14195	0.325872	0	0	64482	1.480303

APPENDIX D

WATER QUALITY DETAILS

Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

STORMFILTER STEEL CATCHBASIN DESIGN NOTES

STORMFILTER TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. 1 CARTRIDGE CATCHBASIN HAS A MAXIMUM OF ONE CARTRIDGE. SYSTEM IS SHOWN WITH A 27" CARTRIDGE, AND IS ALSO AVAILABLE WITH AN 18" CARTRIDGE. STORMFILTER CATCHBASIN CONFIGURATIONS ARE AVAILABLE WITH A DRY INLET BAY FOR VECTOR CONTROL. PEAK HYDRAULIC CAPACITY PER TABLE BELOW. IF THE SITE CONDITIONS EXCEED PEAK HYDRAULIC CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

CARTRIDGE SELECTION

CARTRIDGE HEIGHT	27"				18"		18" DEEP			
RECOMMENDED HYDRAULIC DROP (H)	3.05'				2.3'		3.3'			
SPECIFIC FLOW RATE (gpm/sf)	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	
CARTRIDGE FLOW RATE (gpm)	22.5	18.79	11.25	15	12.53	7.5	15	12.53	7.5	
PEAK HYDRAULIC CAPACITY		1.0			1.0		1.8			
INLET PERMANENT POOL LEVEL (A)	1'-0"			1'-0"			2'-0"			
OVERALL STRUCTURE HEIGHT (B)		4'-9"			3'-9"		4'-9"			

* 1.67 gpm/sf SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- THIS DRAWING
- CONTRACTOR. OF THE STEEL SFCB.
- USING FLEXIBLE COUPLING BY CONTRACTOR.
- BY CONTRACTOR.
- 7-INCHES. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 38 SECONDS. 9. SPECIFIC FLOW RATE IS EQUAL TO THE FILTER TREATMENT CAPACITY (gpm) DIVIDED BY THE FILTER CONTACT SURFACE AREA (sq ft).

INSTALLATION NOTES

- ENGINEER OF RECORD.
- PROVIDED)
- C. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF

PLAN VIEW

SECTION A-A

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STORMFILTER CATCHBASIN STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR

3. STORMFILTER CATCHBASIN WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN

4. INLET SHOULD NOT BE LOWER THAN OUTLET. INLET (IF APPLICABLE) AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY

5. MANUFACTURER TO APPLY A SURFACE BEAD WELD IN THE SHAPE OF THE LETTER "O" ABOVE THE OUTLET PIPE STUB ON THE EXTERIOR SURFACE

6. STORMFILTER CATCHBASIN EQUIPPED WITH 4 INCH (APPROXIMATE) LONG STUBS FOR INLET (IF APPLICABLE) AND OUTLET PIPING. STANDARD OUTLET STUB IS 8 INCHES IN DIAMETER. MAXIMUM OUTLET STUB IS 15 INCHES IN DIAMETER. CONNECTION TO COLLECTION PIPING CAN BE MADE

7. STEEL STRUCTURE TO BE MANUFACTURED OF 1/4 INCH STEEL PLATE. CASTINGS SHALL MEET AASHTO M306 LOAD RATING. TO MEET HS20 LOAD RATING ON STRUCTURE, A CONCRETE COLLAR IS REQUIRED. WHEN REQUIRED, CONCRETE COLLAR WITH #4 REINFORCING BARS TO BE PROVIDED

8. FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CATCHBASIN (LIFTING CLUTCHES

1-CARTRIDGE CATCHBASIN										
STORMFILTER DATA										
STRUCTURE ID XXX										
WATER QUALITY FLOW RATE (cfs)		X.XX								
PEAK FLOW RATE (<1 cfs)		X.XX								
RETURN PERIOD OF PEAK FLOW (yrs)	XXX								
CARTRIDGE HEIGHT (27", 18", 18" DEE	EP)	XX								
CARTRIDGE FLOW RATE (gpm)		XX								
MEDIA TYPE (PERLITE, ZPG, PSORB)		XXXXX								
RIM ELEVATION		XXX.XX'								
PIPE DATA:	I.E.	DIAMETER								
INLET STUB	XXX.XX'	XX"								
OUTLET STUB	XXX.XX'	XX"								
)	ET								
INLET	INLET									
SLOPED LID		YES\NO								
SOLID COVER		YES\NO								
NOTES/SPECIAL REQUIREMENTS:										

1 CARTRIDGE CATCHBASIN STORMFILTER STANDARD DETAIL

STORMFILTER STEEL CATCHBASIN DESIGN NOTES

CARTRIDGE SELECTION

CARTRIDGE HEIGHT	27"				18"		18" DEEP		
RECOMMENDED HYDRAULIC DROP (H)	3.05'				2.3'		3.3'		
SPECIFIC FLOW RATE (gpm/sf)	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf
CARTRIDGE FLOW RATE (gpm)	22.5	18.79	11.25	15	12.53	7.5	15	12.53	7.5
PEAK HYDRAULIC CAPACITY		1.0			1.0			1.8	
INLET PERMANENT POOL LEVEL (A)		1'-0"			1'-0"			2'-0"	
OVERALL STRUCTURE HEIGHT (B)		4'-9"			3'-9"		4'-9"		

* 1.67 gpm/sf SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB[®] (PSORB) MEDIA ONLY

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. WWW.CONTECHES.COM 3. STORMFILTER CATCHBASIN WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 4. INLET SHOULD NOT BE LOWER THAN OUTLET. INLET (IF APPLICABLE) AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY CONTRACTOR.
- OF THE STEEL SFCB.
- 6. STORMFILTER CATCHBASIN EQUIPPED WITH 4 INCH (APPROXIMATE) LONG STUBS FOR INLET (IF APPLICABLE) AND OUTLET PIPING. STANDARD USING FLEXIBLE COUPLING BY CONTRACTOR.
- BY CONTRACTOR.
- 7-INCHES. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 38 SECONDS.

INSTALLATION NOTES

- ENGINEER OF RECORD.
- PROVIDED)

C. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF FLOATABLES BAFFLE

SECTION B-B

CARTRIDGE

CATCHBASIN FOOT

(TYP. OF 4)

SUPPORT TYP.

BAY INLET TYP.

FLOW

CLEANOUT

В

SECTION A-A

StormFilter

ACCESS PLUG

ON WEIR WALL

KIT TYP.

STORMFILTER TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. 2 CARTRIDGE CATCHBASIN HAS A MAXIMUM OF TWO CARTRIDGES. SYSTEM IS SHOWN WITH A 27" CARTRIDGE, AND IS ALSO AVAILABLE WITH AN 18" CARTRIDGE. STORMFILTER

PEAK HYDRAULIC CAPACITY PER TABLE BELOW. IF THE SITE CONDITIONS EXCEED PEAK HYDRAULIC CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STORMFILTER CATCHBASIN STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR

5. MANUFACTURER TO APPLY A SURFACE BEAD WELD IN THE SHAPE OF THE LETTER "O" ABOVE THE OUTLET PIPE STUB ON THE EXTERIOR SURFACE

OUTLET STUB IS 8 INCHES IN DIAMETER. MAXIMUM OUTLET STUB IS 15 INCHES IN DIAMETER. CONNECTION TO COLLECTION PIPING CAN BE MADE

7. STEEL STRUCTURE TO BE MANUFACTURED OF 1/4 INCH STEEL PLATE. CASTINGS SHALL MEET AASHTO M306 LOAD RATING. TO MEET HS20 LOAD RATING ON STRUCTURE, A CONCRETE COLLAR IS REQUIRED. WHEN REQUIRED, CONCRETE COLLAR WITH #4 REINFORCING BARS TO BE PROVIDED

8. FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE

9. SPECIFIC FLOW RATE IS EQUAL TO THE FILTER TREATMENT CAPACITY (gpm) DIVIDED BY THE FILTER CONTACT SURFACE AREA (sq ft).

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CATCHBASIN (LIFTING CLUTCHES

2-CARTRIDGE DEEP (STORMFILTER	CATCH DATA	BASIN
		XXX
WATER QUALITY FLOW RATE (cfs)		X.XX
PEAK FLOW RATE (<1.8 cfs)		X.XX
RETURN PERIOD OF PEAK FLOW (vrs)		XXX
CARTRIDGE FLOW RATE (gpm)		XX
MEDIA TYPE (PERLITE, ZPG, PSORB)		XXXXX
RIM ELEVATION		XXX.XX'
	1.15	
	I.E.	DIAMETER
OUILEI SIUB	XXX XX	
SLOPED LID		YES\NO
SOLID COVER YES\NO		
NOTES/SPECIAL REQUIREMENTS:		

2 CARTRIDGE CATCHBASIN STORMFILTER STANDARD DETAIL

APPENDIX E

DOWNSTREAM ANALYSIS (WILL BE PROVIDED WITH FINAL ENGINEERING)

> Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture

APPENDIX F

OPERATIONS AND MAINTENANCE (WILL BE PROVIDED WITH FINAL ENGINEERING)

> Site Planning Civil Engineering Land Use Consulting Project Management Landscape Architecture