

RECEIVED
10/16/2025

ABC Herron Tree LLC
P.O. Box 64
Gold Bar, WA 98251
425-293-2443
mountainredd@comcast.net

*Tree Risk Assessor Qualified (TRAQ)
Journeyman Tree Trimmer
ISA certified Arborist PN-6967A
ASCA Tree and Plant Appraisal Qualified
WRRQ Wildfire Risk Reduction Qualified*

September 19, 2025

Lee Ohlde
Summit Landscape Architecture
P.O. Box 1603
Monroe, WA 98272

RE: Property Owner: Jill Schlosser
Site Address: 4822 103rd PI SW, Mukilteo, WA 98275
Parcel#:00650500005500
Lot Size: 0.26 acres

Dear Mr. Ohlde,

ABC Herron Tree LLC is pleased to submit this report compiling the Visual Tree Risk and Evaluation Assessments performed on all significant trees, which are defined in Mukilteo Municipal Code 17.08.020 as "evergreen trees eight inches or greater in diameter...and deciduous trees twelve inches or greater as measured at least four feet above existing grade" located on the parcel listed above, as well as offsite and buffer trees.

Tree Inventory assessments were made in accordance with American National Standards Institute (ANSI) A300 Part 5 standards. This report is more of an inventory styled report, this will help establish tree protections regarding tree removal, and retention determinations. Visual Tree Assessments is an outlined process in accordance with Tree Risk Assessment Qualification (TRAQ) program and is a recognized standard of care by the International Society of Arboriculture (ISA) to evaluate tree health and risk.

I have included a detailed report of my findings below, along with an inventory styled matrix covering overall tree measurement and characteristics. Please feel free to contact me with any questions you may have.

Yours,

Cody Herron

Cody Herron

Contents

- Assignment
- Personal qualifications, scope of work and methodology
- Site Observations
- Methods used to determine tree location and tree health
- Site Map
- Tree Assessment Matrix
- Site Photo
- GPS Coordinates
- Discussion and conclusion
- Tree Protection Plan
- References
- Waiver of Liability

Assignment

On September 16, 2025, I was asked to complete an arborist report for parcel 00650500005500 at 4822 103rd PI SW, Mukilteo for a proposed development project. The report includes all evergreen trees eight inches or greater in diameter at breast height (DBH) and deciduous trees twelve inches or greater in DBH on the parcel as well as street trees and other offsite trees. This report covers criteria set forth under the City of Mukilteo's Tree regulations as of the date of this report.

Personal qualifications, scope of work and methodology:

The knowledge I used to evaluate the trees comes from over 25 years of experience in the tree care industry, including two years of schooling from South Seattle Community College. I am a recognized Journeyman Tree trimmer with 12 years of experience through the International Brotherhood Electrical Workers (IBEW). I also have over 10 years' experience as an ISA certified arborist, including six years working for Snohomish County Public Utility District (PUD) as an arborist. I am currently employed by King County as a Vegetation Specialist Arborist for the Executive Services Division. I have also worked for Seattle City Light and Washington State Department of Transportation in performing tree maintenance and general vegetation management, mitigation, and noxious weed control. In addition to my experience and ISA certification maintained in good standing, I am also TRAQ certified (Tree Risk Assessment Qualified) and ASCA Tree and Plant Appraisal Qualified. I have relied on my training in these areas to perform the duties outlined.

I followed the protocol delineated by the ISA for Level 2 Visual Assessment Process. By doing so I am examining each tree independently as well as collectively as groups or stands of trees provide stability and can lower the risk of independent tree failure. This scientific process examines tree health (e.g., size, vigor, and insect and disease process) as well as site condition (soil, conditions, nursery stumps, anaerobic conditions, etc.).

A key part of tree risk assessment is to categorize the likelihood of failure of one or more branches, the stem, or the roots. Visual assessment includes looking for and determining the significance of the defects and structural conditions. Some structural defects or conditions are more likely to lead to failure than others. Individual defects or conditions may not by themselves indicate a serious structural problem, but in combination with other conditions they may contribute to failure.

All tree species have widely varying lifespans and tolerance capabilities to heal wounds from damage caused by biotic and abiotic forces. Knowledge of failure patterns (disease, lifespan, environmental conditions, and species characteristics) associated with different species is critical in making effective reports.

Site Observations:

The parcel at **4822 103rd PI SW, Mukilteo** is a developed lot of 0.26 square acres the Snohomish County Assessor website. I arrived at around 10 am on September 19, 2025. This is a normal sized urban lot with only two significant sized trees found on site under code 17.59.020. The rest of the plants on site are either shrubs or undersized trees.

Methods used to determine tree location and tree health:

The tree's diameter was measured with a forester's tape. Tree dripline and height and other target distances were measured with a Nikon Pro laser range finder or tape shown in Figures 1&2. Trees are tagged with Dymo Rhino aluminum labeler numerical impression and pink ribbon in Figure 3 unless otherwise noted in the Tree Assessment Matrix. All measurements and notes are recorded in digital format on site. Forest Metrix software is used to record data and pictures to help illustrate the findings, see Site Map and Tree Assessment Matrix photos.

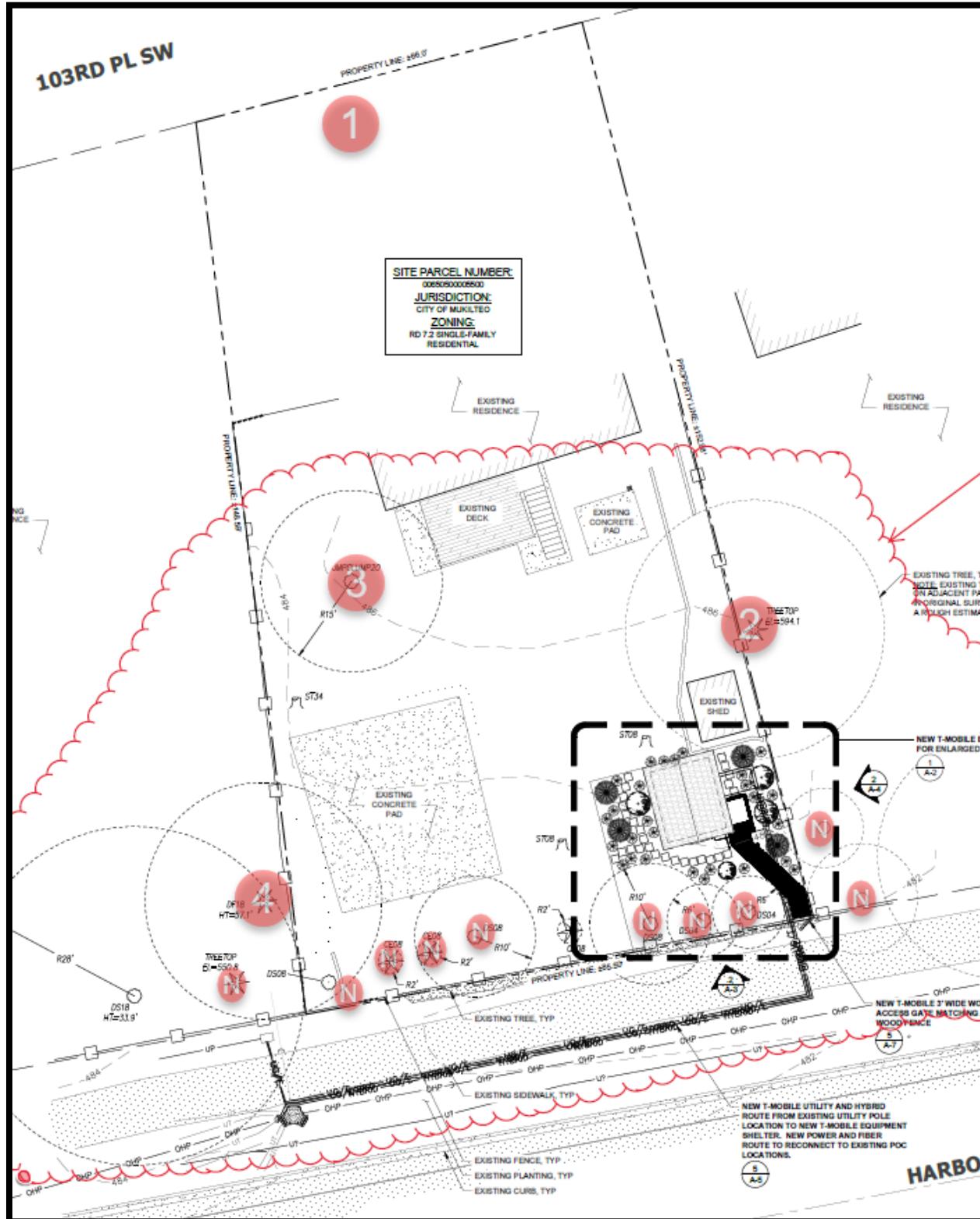
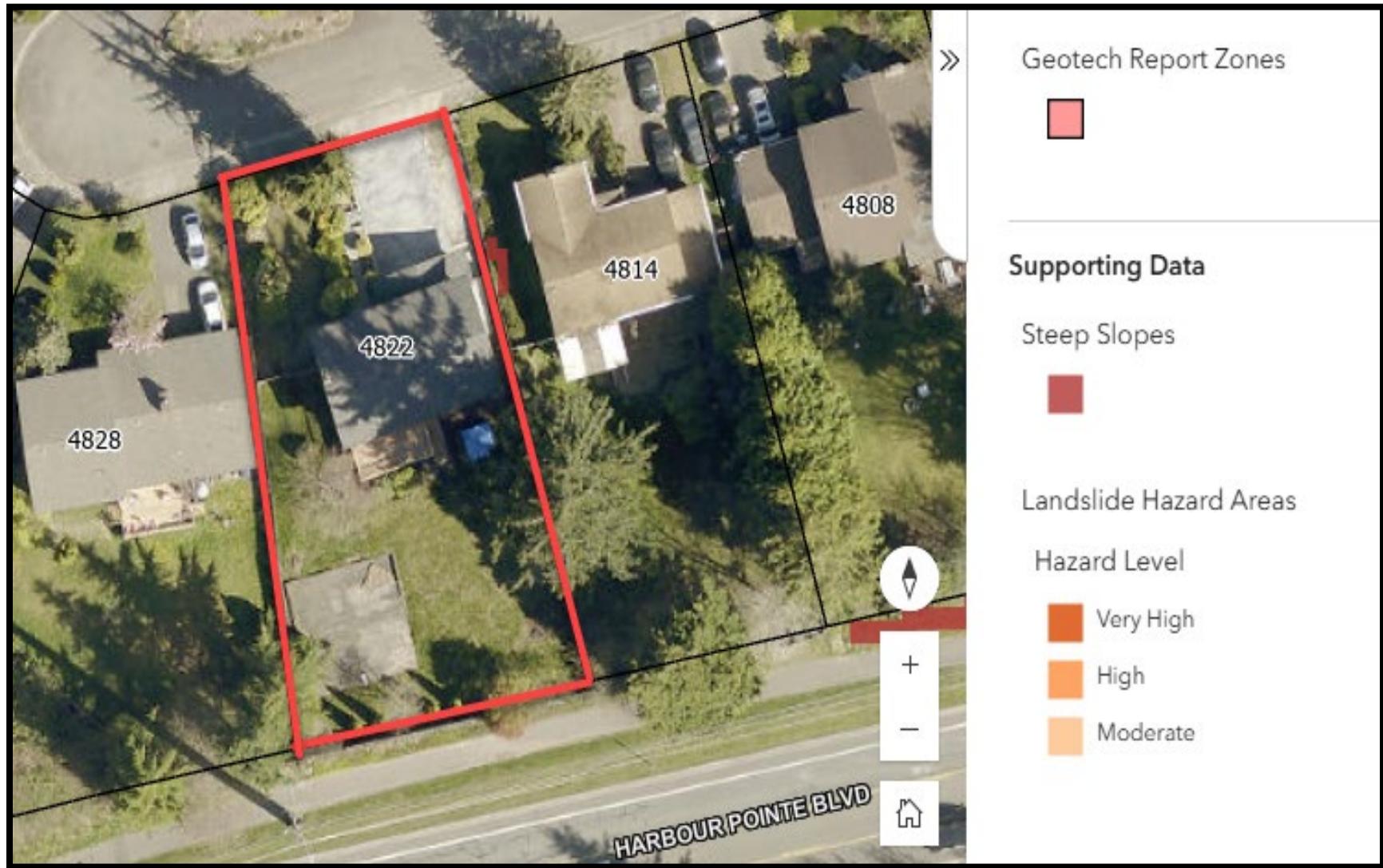
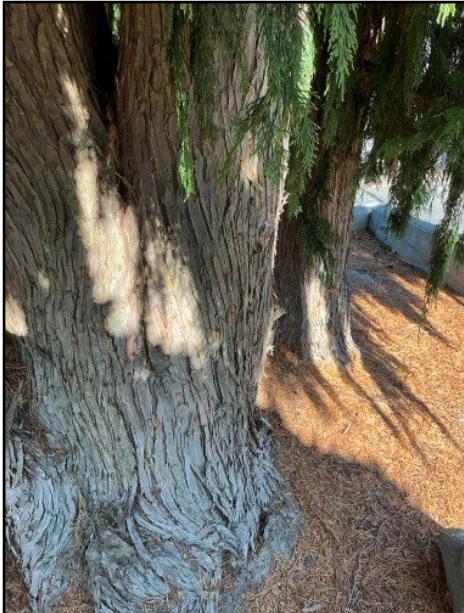

Figure 1

Figure 2


Figure 3

Site Map Figure 4 (for visual use only, not to be used as a survey) This is a detail from a site plan dated 4/28/25. Trees indicated coordinate numerically with the Tree Assessment Matrix. Trees marked "N" are non-significant trees per city code.

Critical Areas Map Figure 5 Per the SDCI Map there are no critical areas on this parcel.

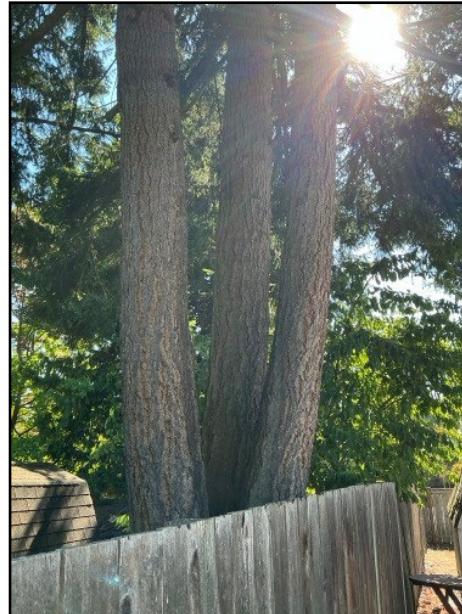

ABC HERRON TREE LLC
Certified Tree Risk Arborist

Tree Assessment Matrix

Cody Herron
TRAQ Certified Arborist
PN6967A

Page 6 of 19
4822 103rd Pl SW, Mukilteo

Tree	Species	DBH (in)	Drip (ft)	CRZ (ft)	Condition	Structure	Risk	Pres. Value	Recommendations
1	Alaska yellow cedar <i>Callitropsis nootkatensis</i>	26.7	8.0	26.7	4 Good	4 Good	N/A	N/A	Tree Inventory
Notes/Defect	This tree has multiple stems and is an adjusted DBH.								



Tree Assessment Matrix

Cody Herron
TRAQ Certified Arborist
PN6967A

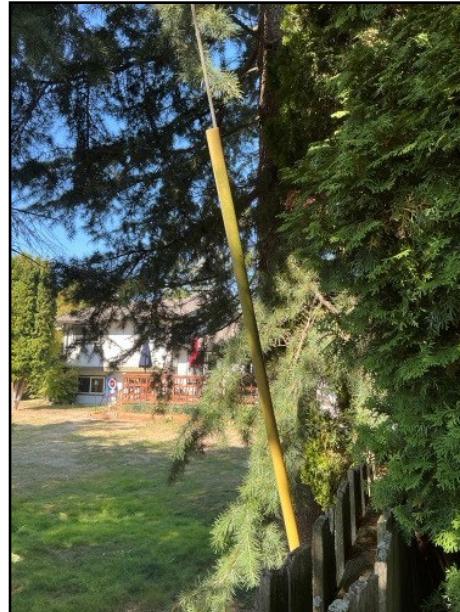
Tree	Species	DBH (in)	Drip (ft)	CRZ (ft)	Condition	Structure	Risk	Pres. Value	Recommendations
2	Douglas fir <i>Pseudotsuga menziesii</i>	34.6	25.0	34.6	4 Good	4 Good	N/A	N/A	Tree Inventory
Notes/ Defect	This tree has multiple stems and is an adjusted DBH. This is an offsite tree on the property to the east at 4814 103rd PI SW. The drip line of this tree over extends the fence by 17 feet to the west.								

Tree Assessment Matrix

Cody Herron
TRAQ Certified Arborist
PN6967A

Page 8 of 19
4822 103rd PI SW, Mukilteo

Tree	Species	DBH (in)	Drip (ft)	CRZ (ft)	Condition	Structure	Risk	Pres. Value	Recommendations
3	Japanese maple <i>Acer palmatum</i>	14.2	10.0	14.6	4 Good	3 Fair	N/A	N/A	Tree Inventory
Notes/Defect	This tree has multiple stems and is an adjusted DBH.								



ABC HERRON TREE LLC
Consulting Tree Risk Arborist

Tree Assessment Matrix

Cody Herron
TRAQ Certified Arborist
PN6967A

Tree	Species	DBH (in)	Drip (ft)	CRZ (ft)	Condition	Structure	Risk	Pres. Value	Recommendations
4	Deodora cedar <i>Cedrus deodora</i>	18.0	15.0	18.0	4 Good	3 Fair	N/A	N/A	Tree Inventory
Notes/Defect	This tree has multiple stems and is an adjusted DBH. This tree is an offsite tree at 4828 103rd PI SW. This tree over extends the fence line by about 20 feet to the east.								

Photo 1 Figure 6 This photo shows non-significant sized trees in the back of the property that do not meet the description of a regulated tree per MMC 17.08.020.

GPS coordinates (not official survey, visual aid only) see Table 1.

Tree #	Species	Latitude	Longitude
1	Alaska yellow cedar	47.90496510265048	-122.29961916991623
2	Douglas fir	47.90476268872624	-122.2993255764526
3	Japanese maple	47.9047314923789	-122.29961233422893
4	Deodora cedar	47.904560264337945	-122.29969985207966

Discussion and Conclusion

Per MMC 17.59.050 tree removal requires review and approval from the city. This lot has two trees that meet the definition of a significant tree, and several trees that do not. Included in this report are two off-site trees with driplines that extend onto this lot.

Per MMC 17.59.060 the minimum tree retention requirements must be met:

“A. Minimum Retention Requirements.

1. For new development, a minimum of twenty-five percent of the existing significant trees must be retained unless the director determines additional trees must be removed to facilitate practical and appropriate use of the building envelope. Tree removal in excess of seventy-five percent must be replaced at the ratios in subsection B of this section.”

By retaining one of the two significant trees on this lot this requirement will have been met.
In addition, the code indicates the following:

2. Removal of trees on developed sites must comply with replacement requirements in subsection B of this section. The director may waive or reduce replacement requirements when the required number of replacement trees cannot be safely or reasonably accommodated on site.
3. No removal of trees is allowed on vacant lots without an approved development permit.
4. Fee In Lieu. When approving waivers or reductions to the standards, the director may require a fee in lieu equivalent to the cost of a tree meeting the requirements, installation (labor and equipment), maintenance for two years, and fund administration. Those fees may be used by the city for tree planting, restoration activities, tree canopy analysis, public education, or related activities.

B. Replacement Requirements.

1. Any time tree removal exceeds the retention requirements in subsection A of this section, trees must be replaced on the same property at the following ratios:

Size of Removed Tree	Number of Replacement Trees Required	Minimum Size and Type of Replacement Trees
8—17.9 inches DBH	1	2" caliper (diameter as measured 4 inches above soil line) for deciduous trees.
18—29.9 inches DBH	2	6 feet tall for conifers.
30+ inches	3	

2. Trees planted within five feet of the sidewalk or road must have root guards installed.
3. At any time within the first two years of planting, the city may require an arborist assessment of trees that look unhealthy and require replacement of any trees that the arborist finds are not in good health.
4. On steep slopes, deep-rooted bushes or ground cover such as ocean spray, snowberry, salal or evergreen huckleberry may be planted at a three-to-one ratio as an alternative to the tree ratios above when the tree stump and roots are left in place. (Ord. 1499 § 1 (Exh. A), 2024)"

Tree Protection Plan

Tree protection areas should be designated for all trees that are proposed to be preserved, as well as off site trees. No excavation, fill, placing of materials or equipment, or vehicle operation shall be allowed during construction within the tree protection area. If encroachments are needed inside the critical root zone I recommend that disturbance to no more than one-third of the area within the outer half of the area within the tree protection area of each tree should be allowed. It is not recommended to disturb the ground within the inner tree protection area of each tree, which is the area encircling the base of a tree equal to one half the diameter of the tree protection area.

Any major excavation or approved work near or within critical root zones of trees to be retained should be monitored by a certified arborist. This can ensure proper root pruning if necessary and encroachments that may damage or harm protected trees' health and vigor. Tree fencing and protection is recommended to be monitored and erected by licensed arborist. A pre-construction meeting should be established to set expectations and to answer questions about tree care.

As described above, the Tree Protection Area for a tree could be reduced as follows:

Figure 7

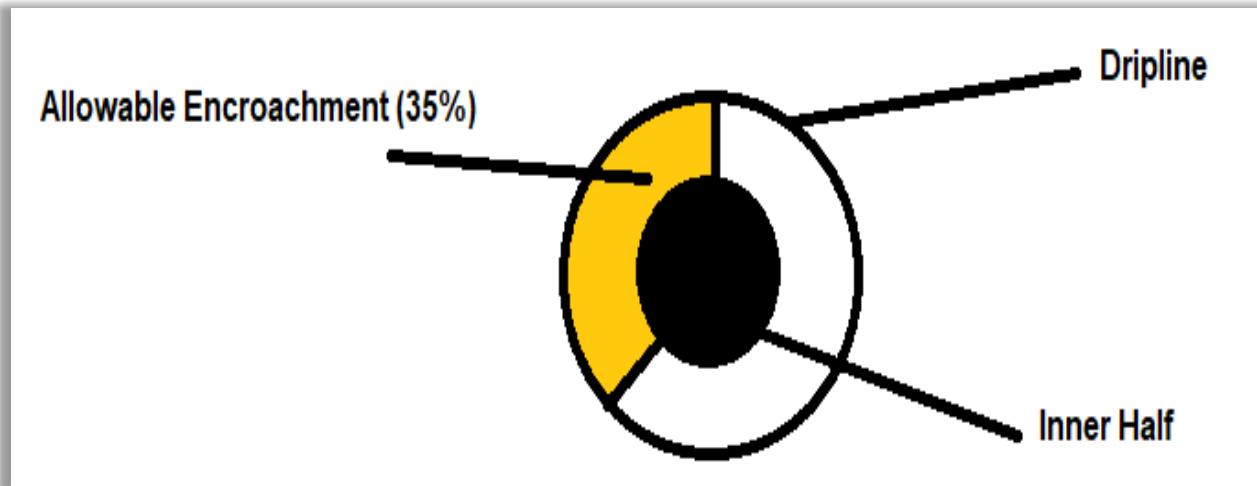
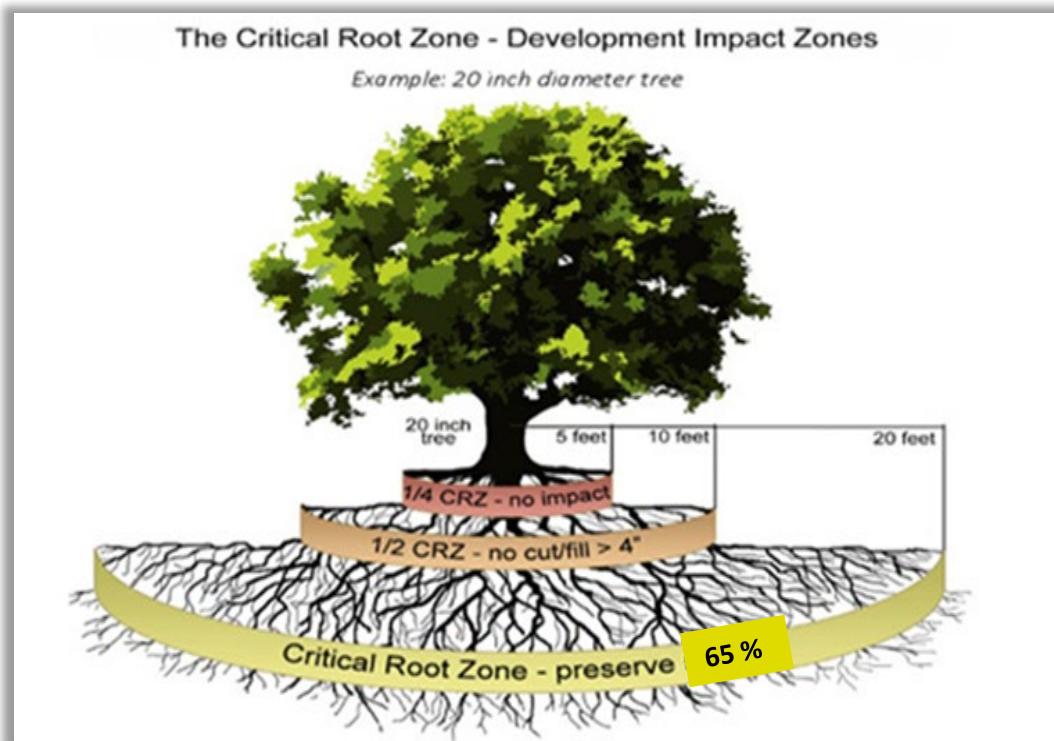



Figure 8

Here is some additional guidance on TPZ zones provided by Best Management Practices pages 34-37, *Managing Trees During Site Development and Construction Volume*, Third Edition. This information may be useful if temporary access is needed inside of TPZ area.

Tree Protection Zone (TPZ) Barrier Specifications

Contracts for installation should include specifications for the:

- Type of barrier (e.g., chain-link fence, welded wire, wood fence, berms, buffer trees)
- Height of the barrier
- Method of anchoring the barrier in the ground
- Manner and timing of barrier installation
- Opening for access for tree inspection and maintenance
- Signage (size, type, information to be included, language(s), etc.)

TPZ barrier options include chain-link, welded wire, and wood fences; berms; buffer trees; and other devices. Fences should be sturdy and highly visible to discourage entry into the area. The fence should ideally be 4 to 8 ft (1.2 to 2.4 m) tall and solidly anchored into the ground. The preferred fence is chain-link, wire mesh, or wood. Plastic construction/snow fencing is easily moved or destroyed by construction activities and therefore is not recommended unless it is hung from a heavy wire attached between sturdy posts. In all cases, the fence should meet or exceed applicable permitting requirements. An opening may be left in the barrier to allow access to the tree for inspection and maintenance activities, such as mulch replenishment and irrigation.

TPZ barriers should be clearly marked with signs stating that the area within is being protected and that no one is allowed to enter or disturb this area without authorization (Figure 11). Signs should contain contact information

for the contractor and/or arborist. Text on the signs should be in the language(s) commonly spoken on the site.

Figure 11. Example of tree protection zone (TPZ) signage.

Providing Temporary Construction Access

Foot or vehicular traffic and construction activities should be kept outside of the TPZ for the entire duration of construction. In some cases, there may need to be vehicle access within the TPZ. In

these cases, trunk, branch, and/or soil should have temporary additional protection. Even with temporary protection, activities should be no closer than 5 ft (1.5 m) from the trunk.

Vertical Clearance

If temporary access occurs within the drip line, the distance to the lowest branch should be considered. The lowest branch needs to be higher than the equipment and its exhaust to avoid tree damage. Avoid temporary access routes that would require removal of large branches. Where needed and possible, it is better to tie branches out of the way rather than removing them.

Trunk Protection

Trunk protection is a temporary physical barrier installed to protect the trunk and/or buttress roots from mechanical damage when demolition or construction activities are expected to be close to the trunk (Figure 12). An example of these activities is removal of pavement close to a tree. One type of trunk protection is thick wood planks (dimensional lumber) around the trunk, preferably on a closed-cell foam or dimpled drainage board pad. Straps

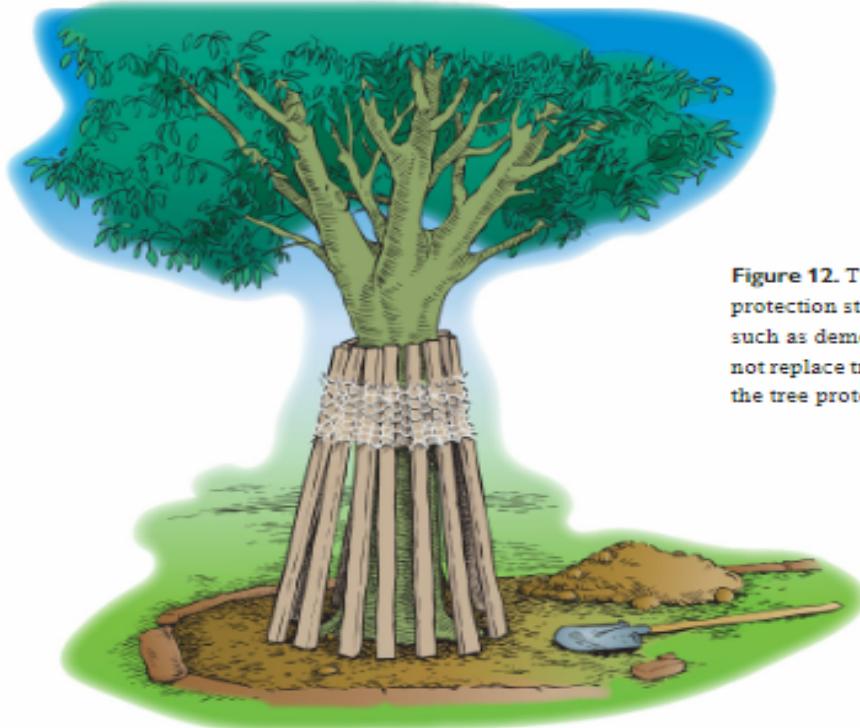


Figure 12. Temporary trunk and buttress root protection structure for short-term activities, such as demolition near the trunk. This does not replace tree protection fencing to enclose the tree protection zone.

or wire are used to bind the planks in place. No fasteners should be driven into the tree. Wood barriers can be installed at an angle to protect the trunk flare and buttress roots. Another type of trunk protection is mesh tubes filled with straw or similar material (straw wattle) wrapped around the trunk.

When the work within the TPZ is completed, the trunk protection devices should be removed, and tree protection barriers should be reinstalled. Trunk protection devices left for too long can girdle or damage the tree. Straw wattle left for long periods of time can become waterlogged and damage the bark.

Soil and Root Protection

When additional soil or root protection is needed inside or outside the TPZ, actions can be taken to distribute the load, minimizing soil compaction and mechanical root damage (Figure 13). These treatments include:

- Applying 6 to 12 in (15 to 30 cm) of arborist wood chip mulch to the area

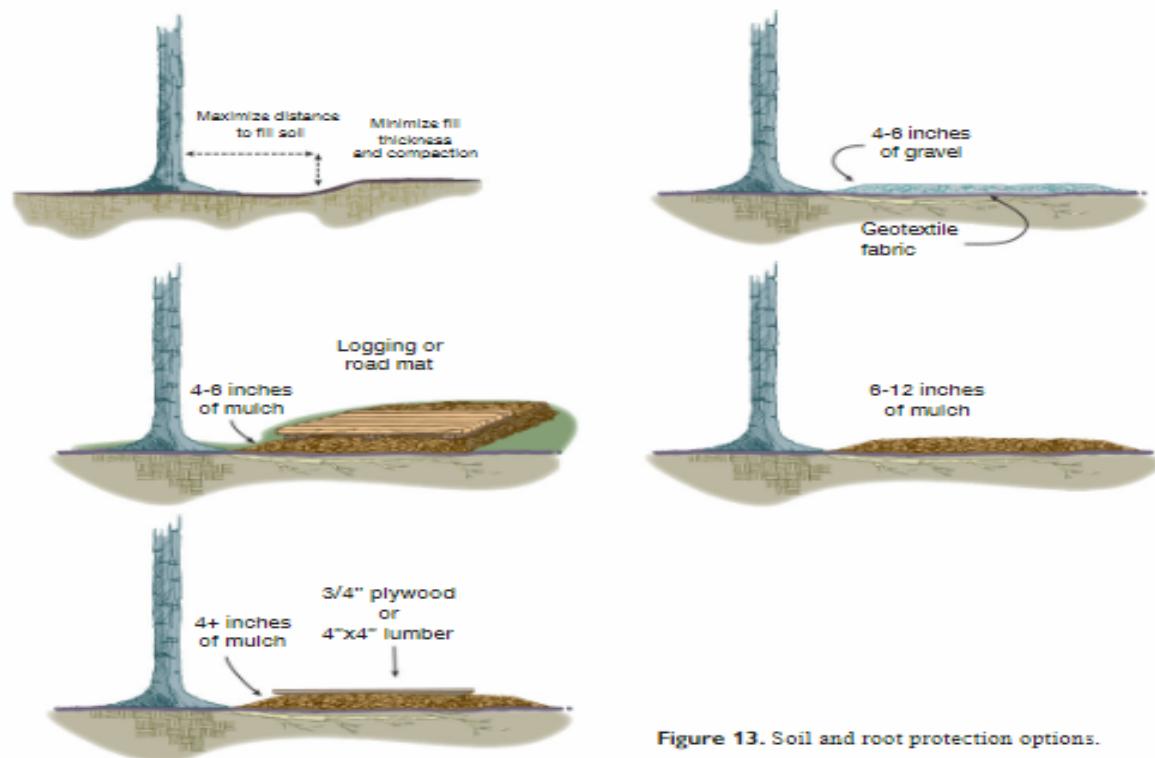


Figure 13. Soil and root protection options.

- Laying logging or road mat, load-bearing steel road plate, 0.75 in (2 cm) minimum thickness plywood, or beams over a 4+ in (10+ cm) thick layer of arborist wood chip mulch
- Applying 4 to 6 in (10 to 15 cm) of gravel with or without a cellular confinement web over a taut, staked, geotextile fabric. Gravel should not be applied directly over the soil surface because it will mix with the topsoil and be difficult to remove without damaging roots. (least preferred method)

Root protection materials will likely need to be removed at the end of the construction phase. Care must be taken to avoid scraping the soil and roots below during the removal operation. Wood chip mulches will break down and be incorporated into the soil if left on the soil surface; therefore, they do not need to be scraped off in many cases.

End of Best Management Practices citation

References

ANSI Z133.1-2000 ANSI A300 (Pat 1) – 2008 American National Standards Institute. ANSI A300 part 5 & BMP Managing Trees During Construction second edition 2016 Kelby Fite, Thomas Smiley.

American National standard for Tree Care Operations: Tree, Shrub and Other Woody Plant Maintenance: Standard Practices (Pruning). New yok: Tree Care Industry Association, 2008. Coder, Dr. Kim D. Construction

Damage Assessments: Tree and Sites. University of Georgia. October 1996. Ashley, Burl S. 1980 Reference handbook for foresters. USDA NA-FR-15. 35 pp. Dirr, Michael A.

Manual of Woody Landscape Plants, Their Identification, Ornamental Characteristics, Culture, Propagation, andUses. Champaign: Stipes Publishing Company, 1990. Dunster & Associates Environmental Consultants Ltd.

Assessing Trees in Urban Areas and the Urban- Rural Interface. US Release 1.0. Silverton: Pacific Northwest Chapter ISA, 2006. Dunster, J. A. 2003.

Preliminary Species Profiles for Tree Failure Assessment. Bowen Island: Dunster & Associates Environmental Consultants Ltd. Dunster, Julian A., E. Thomas Smiley, Nelda Matheny, and Sharon Lilly.

Tree Risk Assessment Manual. Champaign, Illinois: International Society of Arboriculture, 2013. Harris, Richard W, James Clark, and Nelda Matheny. Arboriculture,

Integrated Management of Landscape Trees, Shrubs, and Vines. 4th ed. Upper Saddle River: Prentice Hall, 2004. Lilly, Sharon.

Best Management Practices Managing Trees During Site Development and Construction Volume. Third Edition. Nelda Matheny, E.Thomas Smiley PHD, Ryan Gilpin, Richard Hauer PHD.

A Photographic Guide to the Evaluation of Hazard Trees in Urban Areas. Second Edition. Champaign, IL: The International Society of Arboriculture, 1994. Matheny, Nelda and Clark, James R.

Trees and Development: A Technical Guide to Preservation of Trees during Land Development. Champaign, IL: The International Society of Arboriculture, 1998. Mattheck, Claus and Breloer, Helge. The Body Language of Trees: A Handbook for Failure Analysis. London: HMSO, 1994 Schwarze, Francis W.M.R.

Diagnosis and Prognosis of the Development of Wood Decay in Urban Trees. Australia: ENSPEC Pty Ltd. 2008 Sinclair, Wayne A., Lyon, Howard H., and Johnson, Warren T.

Diseases of Trees and Shrubs. Ithaca, New York: Cornell University Press, 1987.Prince,

Susan Duvall Visual Tree Assessment Feb 2018. Smiley, E. Thomas, Nelda Matheny, and Sharon Lilly,Tree Risk Assessment Best Management Practices, ANSI A300 Part 9: Tree, Shrub, and Other

Woody Plant Management— Standard Practices (Tree Risk Assessment: Tree Structure Assessment). The International Society of Arboriculture Press. Champaign. IL. 2011. Thies, Walter G. and Sturrock, Rona N.

Laminated root rot in Western North American. United States Department of Agriculture. Pacific Northwest. Resource Bulletin PNW-GTR-349. April 1999. USDA Regions 6

Root Diseases in Oregon and Washington Conifers James S. Hadfield, Donald J. Goheen, Gregory M. Filip, Craig L. Schmitt, Robert D. Harvey

Waiver of Liability

There are many conditions affecting a tree's health and stability, which may be present and cannot be ascertained, such as root rot, previous or unexposed construction damage, internal cracks, stem rot and more which may be hidden. Changes in circumstances and conditions can also cause a rapid deterioration of a tree's health and stability. While I have used every reasonable means to examine these trees, this evaluation represents my opinion of the tree's health at this point in time. These findings do not guarantee future safety nor are they predictions of future events.

Any legal description provided to the consultant-appraiser is assumed to be correct. Any titles and ownerships to any property are assumed to be good and marketable. No responsibility is assumed for matters legal in character. All property is appraised or evaluated as free and clear; under responsible ownership and competent management the tree evaluation consists of an external visual inspection of an individual tree's root flare, trunk, and canopy from the ground. Care has been taken to obtain all information from reliable sources. All data has been verified insofar as possible; however, the consultant/appraiser can neither guarantee nor be responsible for the accuracy of information provided by others.

Sketches, maps, diagrams, graphs, and photographs in this report, intended as visual aid, are not necessarily to scale and should not be construed as engineering or architectural reports or surveys.

As conditions change, it is the responsibility of the property owners to schedule additional site visits by the necessary professionals to ensure that the long-term success of the project is ensured. It is the responsibility of the property owner to obtain all required permits from the city, county state, for federal agencies. It is the responsibility of the property owner to comply with all applicable laws, regulations, and permit conditions. If there is a homeowner's association, it is the responsibility of the property owner to comply with all Codes, Covenants, and Restrictions (CC&R's) that apply to tree pruning and tree removal.

This tree evaluation is to be used to inform and guide the client in the management of their trees. This in no way implies that the evaluator is responsible for performing recommended actions or using other methods or tools to further determine the extent of internal tree problems without written authorizations from the client. Furthermore, the evaluator in no way holds that the opinions and recommendations are the only actions required to ensure that the tree will not fail. A second opinion is recommended. The client shall hold the evaluator harmless for all injuries or damages incurred if the evaluator's recommendations are not followed or for acts of nature beyond the evaluator's reasonable expectations, such as severe winds, excessive rains, heavy snow loads, etc.

The consultant/appraiser shall not be required to give testimony or to attend court because of the report unless subsequent contractual arrangements are made including payment of an additional fee for such services as described in the fee schedule and contract of engagement.

This report and all attachments, enclosures, and references are confidential and are for the use of the client concerned. Loss or alteration of any part of this report invalidates the entire report. They may not be reproduced or used in any way or dispersed in any form without the prior consent of the client concerned and ABC Herron Tree LLC. This report constitutes a whole. No single piece of part can be used without the entire text. Any use or restricted copying nullifies the entire report.