

Project: Harbor Grove Development Hydrologic Impacts Assessment **Location:** 9110 53rd Ave West, Mukilteo, WA **Job#:** SEA-23-1

Sea Pac Homes 120 SW Everett Mall Way Suite #100 Everett, WA 98204 Attn: Glen Belew

Dear Mr. Belew:

I am pleased to submit this letter report providing the results of my hydrologic impacts assessment for the Harbor Grove Development (the Site) at 9110 53rd Ave West in Mukilteo, WA. This project will result in a 7-lot single-family lots on 2.43 acres. The City of Mukilteo has requested this assessment to comply with Section 15.16(C.2.b.i.[b]) of the Mukilteo Municipal Code and "shall include an adequate description of the hydrology of the site, conclusions and recommendations regarding the effect of hydrologic conditions on the proposed development and options and recommendations covering the carrying capabilities of the sites to be developed." The City is primarily concerned with the potential for the development to increase water flow into residential lots west of the Site. Slope stability is not a concern for this site, particularly given the plans to build a retaining structure on the west side of the property.

Background

Existing site conditions are shown on the survey in Figure 1. The Site has a total area of 2.43 acres. There is an abandoned house and garage on the property. There is no formal drainage system on the property, although there is a ditch along the eastern side of the property along 53rd Avenue West.

The proposed development plan is provided in Figure 2. The proposed development plan includes seven singlefamily residential lots, roads, stormwater drainage, and a detention vault. The site would be graded relatively flat and a retaining wall would be constructed on the west side of the property. A portion of the site (0.19 acres) in the northeast corner of the site would be left unchanged and preserved as native growth.

All of the captured stormwater runoff will be directed to a detention vault beneath the road and equipped with flow control to meet the stormwater detention requirements before leaving the site. Flow from the detention vault will be piped south and west to the existing stormwater system at the intersection of 92nd Street Southwest and Hargreaves place and eventually discharges to Smuggler's Gulch Creek west of the site. The west side of the site at the base of the retaining wall will not gravity drain to the detention vault. Therefore, any drainage from the base of the wall will be captured and pumped to a structure at the top of the wall where it can gravity drain to the detention vault. Public comments have expressed concern regarding maintenance and operation of the pump.

A wetlands survey conducted by Wetland Resources (May 6, 2021) did not identify any wetlands.

Topography, Geology, and Hydrogeology

Regional topography near the site is shown in Figure 3. As shown on this figure, the site is located on a topographic high with Smuggler's Gulch Creek ravine located north and west of the site. Based on City of Mukilteo mapping, the northern ravine drains into the western ravine. The more refined site topography provided on Figure 1 indicates that elevations across the site range from ranging from 410 ft above mean sea level (AMSL) in the center of the site to 378 ft AMSL in the southwest corner of the property. Figure 1 shows the location of the topographic divide that runs north-south through the property. The western portion of the property slopes to the west and the eastern portion of the property generally slopes to the southeast. There is a closed basin (i.e., a bowl where standing water could collect) near the eastern boundary of the site. Although there is no evidence of surface runoff, any surface runoff from the west basin would flow to the west and any surface runoff from the east basin would flow to the southeast. Groundwater flow may not follow the land contours, and it is likely that groundwater flows towards Smuggler's Gulch Creek located north and west of the site.

April 19, 2023

Kindred Hydro

Earth Solutions NW, LLC conducted a geotechnical study for the Site dated July 30, 2021. This study included eight test pits to depths of 4 to 13 ft and determined that the site was underlain by dense glacial till. The upper 1-4 feet was a combination of topsoil, fill, and weathered glacial till that is generally relatively permeable and well drained. The underlying unweathered glacial till is usually relatively impermeable and perched water often occurs above and within unweathered glacial till. No perched groundwater was detected during excavation of the test pits in June of 2021.

Cobalt Geosciences, LLC conducted a groundwater evaluation dated March 14, 2022. This study included two test pits excavated in early March 2022 to a depth of 14 feet. These explorations encountered 4 to 8 feet of weathered glacial till over unweathered glacial till. No perched groundwater was encountered in either test pit, even though the explorations were conducted at the end of the wet season. Based on these observations, they concluded that saturated groundwater is unlikely to occur above an elevation of 375 feet AMSL. The footing drains for the proposed retaining wall on the west side of the property, with an elevation of 376 feet AMSL and less than 2 ft below existing grade, are unlikely to intercept significant groundwater. In a letter dated August 4, 2022, Earth Solutions NW, LLC estimated that less than 0.5 gpm would be collected in the retaining wall drain during the peak wet season.

Site Visit

I conducted a site visit on March 8, 2022, to observe conditions at and near the Site. The Site surrounded by singlefamily homes on the north, west, and south sides, and by 53rd Avenue West on the east side. Currently, the Site is lightly forested along with a variety of shrubbery, ferns, and other low vegetation. Portions of the site were disturbed in places, likely due to traversing the site with a trackhoe during the geotechnical investigations. There is no evidence of ponding, surface runoff, or erosion on the site. The ditch along 53rd Avenue West was vegetated with no evidence of erosion.

Surface Water Changes Associated with Development

Hydrologic conditions at a site are determined by a variety of factors, including precipitation, topography, vegetation, soils, and groundwater flux beneath the site. Precipitation that falls on a site is distributed into four boxes: evapotranspiration back into the atmosphere, surface runoff, horizontal interflow within near-surface soils (when perching conditions are present), and deep infiltration to groundwater. Development of a site changes how precipitation is partitioned into these boxes and mitigation is generally required to mitigate hydrologic changes that may increase flooding and erosion or adversely impact streams, wetlands, and associated fish and wildlife habitat.

As documented in the Storm Drainage Plan dated April 19, 2023 and shown on Figure 2, Blueline had developed a stormwater management plan that will convey almost all the surface water from the site into a detention vault that will include flow control measures to restrict peak flows from the site. The Storm Drainage Plan includes WWHM hydrologic modeling to demonstrate that these measures will achieve stormwater permit requirements. In compliance with the stormwater permit, Blueline compared surface runoff from a completely forested pre-developed site (plus the neighboring lot) and the developed site with the detention vault and the flow control. These results are summarized in Table 1 and illustrate that the mitigated surface flows from the site are less than the forested flows from the site. Therefore, in terms of impacts to Smuggler's Gulch Creek (the receiving water body) development of the site will reduce peak flows and erosion.

Although consistent with permit requirements, the Blueline modeling does not directly address the potential hydrologic impacts to properties downhill of the Site. As shown on Figure 1, the eastern portion of the site drains east and into the ditch that flows north along 53^{rd} Avenue West. Water from the east basin does not flow into the properties west of the site on Hargreaves Place. The western portion of the site does drain towards the west and any surface water runoff would flow into the properties along Hargreaves Place (shown on Figure 3). Furthermore, consistent with permit requirements, Blueline modeled 100% forested pre-development conditions, while the site has been developed with a single-family home and is not 100% forested with open areas and low-lying vegetation more similar to pasture. Runoff from pasture is generally higher than runoff from forests.

In order to support this hydrologic assessment, additional hydrologic modeling was conducted to estimate surface water flows towards the Hargreaves properties under existing conditions. The modeling was conducted using the WWHM model and assumed 1.24 acres of either pasture or forest on glacial till soil (type C). As shown on Figure 1,

the west basin includes a small area of impervious surface (the house and a portion of the garage). However, the runoff from these structure discharges to the ground and these surfaces were treated as pervious surface for simplicity. As provided in Table 1, surface discharge from the west basin towards the Hargreaves properties ranged from 0.024 cfs to 0.1 cfs depending on the return period and the vegetation cover (forest or pasture). WWHM results are provided in Attachment A.

As shown on Figure 2, most of the developed site will gravity drain to the detention vault and then to the piped stormwater drainage system that discharges directly to Smuggler's Gulch Creek. However, the area associated with the retaining wall on the west side of the property will be captured at the base of the wall and pumped up to the gravity drainage system at the top of the wall. As long as the pump is functioning, any surface water runoff in this area will not flow towards the Hargreaves properties. However, in the unlikely event that the pump was to fail, it is useful to estimate the surface water runoff from this area. As shown on Figure 2, the retaining wall area is 0.24 acres. WWHM hydrologic modeling was conducted for this area assuming grass vegetation and glacial till soils. (runoff from grass is higher than pasture which is higher than forested). The WWHM output file is provided in Attachment B and the results are summarized in Table 1. As shown in the table, surface discharge from the retaining wall area would range from 0.009 cfs to 0.056 cfs. These flows are significantly less (between 20 percent and 70 percent than existing surface flows towards the Hargreaves properties from the west basin. Therefore, development of the site will reduce surface flow towards the Hargreaves properties with or without the pump at the base of the retaining wall.

Entire Site	Entire Site Developed	Existing West Basin	Retaining Wall
100% Forested ^a	with Flow Control ^a	(Forest/Pasture)	area w/o pump
0.07	0.032	0.024/0.031	0.009
0.10	0.044	0.037/0.048	0.016
0.12	0.054	0.045/0.060	0.022
0.16	0.068	0.055/0.076	0.034
0.19	0.080	0.063/0.089	0.044
0.22	0.094	0.070/0.10	0.056
	Entire Site 100% Forested ^a 0.07 0.10 0.12 0.16 0.19 0.22	Entire Site Entire Site Developed 100% Forested ^a with Flow Control ^a 0.07 0.032 0.10 0.044 0.12 0.054 0.16 0.068 0.19 0.080 0.22 0.094	Entire Site 100% Forested ^a Entire Site Developed with Flow Control ^a Existing West Basin (Forest/Pasture) 0.07 0.032 0.024/0.031 0.10 0.044 0.037/0.048 0.12 0.054 0.045/0.060 0.16 0.068 0.055/0.076 0.19 0.080 0.063/0.089 0.22 0.094 0.070/0.10

 Table 1: Surface Discharge Estimates (in cubic feet/second) based on Hydrologic Modeling

^a Based on WWHM modeling provided in the Storm Drainage Report dated April 11, 2023.

Groundwater Changes Associated with Site Development

Public comments have expressed concern that site development will increase groundwater recharge and increase the potential for groundwater seepage downhill of the site. The WWHM hydrologic model is designed to predict surface water flows and does not provide estimates of groundwater recharge. Bidlake and Payne (2001)¹ provide an excellent analysis of hydrologic processes in the Puget Sound basin and equations to estimate groundwater recharge based on soil, vegetation, and site development. The equations relevant to this analysis are provided in Table 2. As shown in Table 2, assuming an annual rainfall of 40 inches, development of a glacial till site reduces the groundwater recharge from an estimate of 11.2 inches to 5.6 inches per year. Therefore, site development is likely to reduce the potential for groundwater seepage down gradient of the site.

Table 2: Estimates of Groundwates	r Recharge (bas	ed on Bidlake and	Payne (2001	1)
-----------------------------------	-----------------	-------------------	-------------	----

Soil and land-cover group	Equation (R = Recharge and P = Precipitation)	Recharge (in.) when P = 40 in.
Forest and non-forest vegetation on soils formed on glacial till	R = 0.388P - 4.27	11.2
Developed or urban land with any soil type	R = 0.194P-2.13	5.6

¹ Bidlake, W.R. and Payne, K.L., 2001, Estimating Recharge to Ground Water from Precipitation at Naval Submarine Base Bangor and Vicinity, Kitsap County, Washington, U.S. Geologic Survey, Water-Resources Investigation Report 01-4110.

Conclusions

The proposed development plan includes seven single-family residential lots, roads, stormwater drainage, and a detention vault. The site would be graded relatively flat and a retaining wall would be constructed on the west side of the property. A portion of the site (0.19 acres) in the northeast corner of the site would be left unchanged and preserved as native growth. The City of Mukilteo has requested a hydrologic assessment to comply with Section 15.16.0S0(C.2.b.i.[b]) of the Mukilteo Municipal Code. The City is primarily concerned with the potential for the development to increase water flow into residential lots west of the Site.

After development, all of the captured stormwater runoff will be directed to a detention vault beneath the road and equipped with flow control to meet the stormwater detention requirements before leaving the site. Flow from the detention vault will be piped south and west to the existing stormwater system at the intersection of 92nd Street Southwest and Hargreaves place and eventually discharges to Smuggler's Gulch Creek west of the site. The west side of the site at the base of the retaining wall will not gravity drain to the detention vault. Therefore, any drainage from the base of the wall will be captured and pumped to a structure at the top of the wall where it can gravity drain to the detention vault.

The site is located on a topographic high with Smuggler's Gulch Creek ravine located north and west of the site. The western portion of the property slopes to the west and the eastern portion of the property generally slopes to the southeast. Although there is no evidence of surface runoff, any surface runoff from the west basin would flow to the west and any surface runoff from the east basin would flow to the southeast.

Geotechnical explorations have identified that that site is underlain by glacial till and no groundwater was observed in any of the explorations, including two deep test pits conducted in March of 2022. Based on these observations, footing drains for the proposed retaining wall on the west side of the property are unlikely to intercept groundwater. However, groundwater conditions can vary depending on precipitation and soil conditions and it is possible that the footing drains will capture groundwater during periods of high precipitation.

Based on hydrologic modeling presented in the Storm Drainage Report, the stormwater controls proposed for the site will reduce peak flows in Smuggler's Gulch Creek. Hydrologic modeling presented in this report indicates that development of the site will reduce surface discharge towards the Hargreaves properties by 20-70 percent, even without the pump at the base of the retaining wall. Based on methods developed by Bidlake and Payne (2001) development of the site will also reduce groundwater recharge at the site by approximately 50 percent. These analyses indicate that development of the site should reduce the water flow into and beneath the Hargrove properties west of the site.

Limitations and Closure

Work for this project was performed and this report prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities at the time the work was performed. It is intended for the exclusive use of Sea Pac Homes for specific application to the referenced matter. No other warranty, expressed or implied, is made.

I am pleased to provide this letter report. If you have any questions or concerns, please contact the undersigned.

Sincerely,

Acatt Du

J. Scott Kindred, PE, LHG President Kindred Hydro, Inc. Date: April 19, 2023

Kindred Hydro

Figure 1: Existing Conditions

Based on *Existing Conditions* & *Demo Plan* dated April 19, 2023, prepared by Blueline.

Kindred Hydro

Figure 2: Site Plan Showing Grading and Stormwater Plan

Kindred Hydro

Figure 3: Regional Topography

Attachment A: WWHM Hydrologic Modeling of West Basin

<section-header>

General Model Information

Project Name:	Harbor Grove West Basin
Site Name:	Harbor Grove
Site Address:	9018 53rd Ave W
City:	Mukilteo
Report Date:	3/10/2023
Gage:	Everett
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1: High Flow Threshold for POC1: 50 Percent of the 2 Year 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Steep	acre 1.24
Pervious Total	1.24
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.24
Element Flows To: Surface	Interflow

Interflow Groundwater

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Steep	acre 1.24
Pervious Total	1.24
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.24

Element Flows To: Surface

Interflow

Groundwater

Analysis Results POC 1

1960 1961 1962 1963 1964 1965 1966 1967 1968 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	0.026 0.026 0.025 0.021 0.035 0.039 0.038 0.038 0.028 0.028 0.028 0.017 0.028 0.017 0.028 0.011 0.020 0.011 0.020 0.011 0.020 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.023 0.025 0.020 0.014 0.023 0.025 0.020 0.014 0.023 0.025 0.020 0.014 0.023 0.025 0.020 0.014 0.023 0.025 0.020 0.014 0.023 0.025 0.020 0.014 0.023 0.025 0.020 0.015 0.021 0.021 0.040 0.019	0.031 0.024 0.037 0.031 0.027 0.017 0.039 0.046 0.070 0.023 0.037 0.033 0.023 0.022 0.018 0.025 0.025 0.029 0.024 0.028 0.028 0.029 0.024 0.028 0.029 0.024 0.028 0.029 0.024 0.028 0.029 0.024 0.028 0.029 0.024 0.023 0.028 0.029 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.024 0.023 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.025 0.017 0.029 0.021 0.026 0.028 0.020 0.025 0.064 0.025 0.081 0.024	
--	--	---	--

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.08920.1101

0.0536	0.0814
0.0454	0.0644
0.0405	0.0639
0.0398	0.0555
0.0376	0.0497
0.0351	0.0479
0.0329	0.0462
0.0326	0.0430
0.0324	0.0404 0.0395
0.0291	0.0394
0.0285	0.0379
0.0283	0.0367
0.0282	0.0360
0.0271	0.0355
0.0264	0.0326
0.0259	0.0316
0.0253	0.0308
0.0250	0.0308
0.0237	0.0295
0.0230	0.0292
0.0223	0.0289
0.0220	0.0283
0.0215	0.0281
0.0214	0.0270
0.0207	0.0259
0.0204	0.0253
0.0200	0.0247
0.0198	0.0244
0.0192	0.0242
0.0190	0.0239
0.0187	0.0238
0.0178	0.0231
0.0177	0.0228
0.0170	0.0222
0.0169	0.0210
0.0150	0.0202
0.0144	0.0196
0.0139	0.0179
0.0115	0.0172
0.0105 0.0103	0.0168 0.0168
0.0033	0.0059
	0.0536 0.0454 0.0405 0.0398 0.0398 0.0386 0.0376 0.0351 0.0329 0.0326 0.0324 0.0294 0.0291 0.0285 0.0282 0.0271 0.0269 0.0269 0.0264 0.0259 0.0257 0.0253 0.0250 0.0237 0.0234 0.0230 0.0223 0.0223 0.0220 0.0215 0.0212 0.0207 0.0204 0.0202 0.0207 0.0204 0.0202 0.0207 0.0204 0.0198 0.0197 0.0192 0.0192 0.0193 0.0177 0.0183 0.0175 0.0175 0.0175 0.0170 0.0169 0.0154 0.0150 0.0129 0.0129 0.0129 0.0129 0.0133 0.0033

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0122	13881	23891	172	Fail
0.0127	12690	21966	173	Fail
0.0133	11586	20146	173	Fail
0.0138	10587	18572	175	Fail
0.0143	9625	17182	178	Fail
0.0148	8787	15862	180	Fail
0.0153	8029	14649	182	Fail
0.0158	7360	13560	184	Fail
0.0163	6731	12545	186	Fail
0.0168	6171	11559	187	Fail
0.0173	5668	10675	188	Fail
0.0178	5191	9862	189	Fail
0.0184	4763	9095	190	Fail
0.0189	4765	8376	101	Fail
0.0103	3001	77/7	10/	Fail
0.0194	3640	71/6	106	Fail
0.0199	3315	6583	108	Fail
0.0204	2050	6072	190	
0.0209	2020	5501	109	Fall
0.0214	2021	5091	105	Fall
0.0219	2033		195	ган
0.0224	2413	4735	190	Fall
0.0229	2224	4303	190	Fall
0.0235	2079	4013	×193	Fall
0.0240	1942	3/1/	191	Fall
0.0245	1825	3459	189	Fall
0.0250	1705	3191	187	Fall
0.0255	1581	2969	187	Fall
0.0260	1478	2/66	187	Fall
0.0265	1372	2577	187	Fail
0.0270	1268	2391	188	Fail
0.0275	1191	2224	186	Fail
0.0281	1112	2072	186	Fail
0.0286	1038	1932	186	Fail
0.0291	985	1819	184	Fail
0.0296	944	1694	179	Fail
0.0301	901	1594	176	Fail
0.0306	860	1487	172	Fail
0.0311	816	1391	170	Fail
0.0316	773	1320	170	Fail
0.0321	741	1232	166	Fail
0.0326	695	1163	167	Fail
0.0332	663	1097	165	Fail
0.0337	632	1043	165	Fail
0.0342	608	999	164	Fail
0.0347	581	945	162	Fail
0.0352	560	892	159	Fail
0.0357	543	849	156	Fail
0.0362	525	/98	152	Fail
0.0367	511	766	149	Fail
0.0372	497	732	147	Fail
0.0377	481	699	145	Fail
0.0383	464	670	144	Fail
0.0388	455	646	141	Fail
0.0393	443	624	140	Fail

0.0398 430	603	140	Fail
0.0403 420	590 577	140	Fall
0.0400 412	564	140	Fail
0.0418 395	547	138	Fail
0.0423 387	535	138	Fail
0.0429 380	519	136	Fail
0.0434 371	502	135	Fail
0.0439 364	491	134	Fail
0.0444 350	479	136	Fail
0.0449 338	471	139	Fail
0.0454 325	460	141	Fail
0.0459 316	450	142	Fall
0.0404 303	44Z 131	144	Fail
0.0409 293	434 427	147	Fail
0.0480 275	419	152	Fail
0.0485 269	411	152	Fail
0.0490 262	403	153	Fail
0.0495 249	398	159	Fail
0.0500 244	387	158	Fail
0.0505 237	379	159	Fail
0.0510 232	372	160	Fail
0.0515 224	358	159	Fail
0.0520 220	351	159	Fall
0.0525 217	341	107	Fail
0.0536 208	320	153	Fail
0.0541 204	308	150	Fail
0.0546 202	297	147	Fail
0.0551 197	291	147	Fail
0.0556 194	285	146	Fail
0.0561 187	280	149	Fail
0.0566 183	277	151	Fail
0.05/1 1//	268	151	Fail
0.0576 173	265	153	Fail
0.0502 109	200	100	Fail
0.0507 107	254	155	Fail
0.0597 155	250	161	Fail
0.0602 153	249	162	Fail
0.0607 145	243	167	Fail
0.0612 139	240	172	Fail
0.0617 136	235	172	Fail
0.0622 132	229	173	Fail
0.0628 131	225	171	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

24

Appendix Predeveloped Schematic

Mitigated Schematic

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Attachment B: WWHM Hydrologic Modeling of Retaining Wall Area

<section-header>

General Model Information

Project Name:	Harbor Grove Model Retaining Area
Site Name:	Harbor Grove
Site Address:	9018 53rd Ave W
City:	Mukilteo
Report Date:	3/10/2023
Gage:	Everett
Data Start:	1948/10/01
Data End:	2009/09/30
Timestep:	15 Minute
Precip Scale:	0.800
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1: High Flow Threshold for POC1: 50 Percent of the 2 Year 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use A B, Lawn, Flat	acre 0.24
Pervious Total	0.24
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.24
Element Flows To: Surface	Interflow

Interflow Groundwater

Mitigated Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 0.24
Pervious Total	0.24
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.24

Element Flows To: Surface

Interflow

Groundwater

Analysis Results

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	0.000 0.001 0.000 0.001 0.000 0	0.007 0.064 0.008 0.022 0.011 0.005 0.003 0.008 0.009 0.053 0.006 0.011 0.016 0.008 0.018 0.011 0.006 0.004 0.005 0.026 0.010 0.026 0.010 0.005 0.007 0.005 0.007 0.006 0.005 0.007 0.006 0.005 0.007 0.006 0.005 0.007 0.006 0.005 0.007 0.004 0.005 0.007 0.004 0.005 0.005 0.007 0.004 0.005 0.005 0.007 0.004 0.005 0.005 0.006 0.0015 0.005 0.006 0.0015 0.005 0.006 0.001 0.005
--	--	---

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated.POC #1RankPredevelopedMitigated10.00480.0643 0.0046 0.0030 2 3 0.0534

0.0344

4	0.0024	0.0324
5	0.0011	0.0264
6	0.0008	0.0218
/	0.0008	0.0214
0	0.0007	0.0205
10	0.0007	0.0203
11	0.0006	0.0171
12	0.0005	0.0164
13	0.0004	0.0155
14	0.0003	0.0154
15	0.0002	0.0147
16	0.0002	0.0147
17	0.0002	0.0140
10	0.0002	0.0133
20	0.0002	0.0109
21	0.0002	0.0108
22	0.0002	0.0108
23	0.0002	0.0101
24	0.0002	0.0099
25	0.0002	0.0096
26	0.0002	0.0094
21	0.0002	0.0083
20	0.0002	0.0082
30	0.0002	0.0078
31	0.0002	0.0077
32	0.0002	0.0077
33	0.0002	0.0077
34	0.0002	0.0073
35	0.0002	0.0073
30 37	0.0002	0.0072
38	0.0002	0.0070
39	0.0002	0.0069
40	0.0002	0.0062
41	0.0002	0.0062
42	0.0002	0.0060
43	0.0002	0.0059
44	0.0002	0.0057
40 46	0.0002	0.0055
40	0.0002	0.0055
48	0.0002	0.0052
49	0.0002	0.0052
50	0.0002	0.0050
51	0.0002	0.0048
52	0.0002	0.0047
53	0.0002	0.0047
04 55	0.0002	0.0046
56	0.0002	0.0043
57	0.0002	0.0042
58	0.0002	0.0041
59	0.0002	0.0039
60	0.0002	0.0033
61	0.0002	0.0015

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0001	2868	626006	21858	Fail
0.0001	2000	507602	20050	Fail
0.0001	2002	597005	29000	
0.0002	1202	570225	47439	Fail
0.0002	478	545628	114148	Fail
0.0002	100	523384	523384	Fail
0.0002	90	503920	559911	Fail
0.0002	83	484670	583939	Fail
0.0003	78	466918	598612	Fail
0.0003	72	450448	625622	Fail
0.0003	68	135600	6/0720	Fail
0.0003	64	420022	657706	Fail
0.0003	04	420932	007700	
0.0003	01	407243	00/011	Fall
0.0004	55	394409	/1/10/	Fail
0.0004	53	382432	721569	Fail
0.0004	49	370454	756028	Fail
0.0004	48	359118	748162	Fail
0.0004	45	348424	774275	Fail
0 0005	43	338585	787406	Fail
0.0005	39	328532	842389	Fail
0.0005	38	310121	830702	Fail
0.0005	20	200024	015500	
0.0005	30	309924	010009	Fall Fail
0.0005	38	301582	793030	Fall
0.0006	36	293027	813963	Fail
0.0006	34	284899	837938	Fail
0.0006	32	276771	864909	Fail
0.0006	30	269713	899043	Fail
0.0006	29	262227	904231	Fail
0.0007	26	255168	981415	Fail
0.0007	24	248110	1033791	Fail
0.0007	22	241693	1098604	Fail
0.0007	22	235277	1069440	Fail
0.0007	22	229074	1041245	Fail
0.0007	21	223074	1061290	Fail
0.0000	21	217006	1033700	Fail
0.0000	20	217030	1055790	Foil
0.0000	20	211004	1000020	
0.0008	20	200100	1030940	
0.0008	20	200862	1004309	Fail
0.0009	20	195729	978645	Fail
0.0009	19	191023	1005384	Fail
0.0009	19	186168	979831	Fail
0.0009	17	181463	1067429	Fail
0.0009	17	176885	1040500	Fail
0.0010	17	172650	1015588	Fail
0.0010	17	168373	990429	Fail
0.0010	17	164159	965641	Fail
0.0010	17	160074	941611	Fail
0.0010	17	156352	919717	Fail
0.0010	17	152524	897200	Fail
0.0011	17	1/22027	875/200	Fail
0.0011	17	1/5200	95/170	Foil
0.0011	17	140209	0.04170	r an Foil
0.0011	10	1410/2	940013	Fall
0.0011	15	138450	923000	Fall
0.0012	15	135156	901040	Fail
0.0012	15	131883	879220	Fail

0.0012	15	128868	859120	Fail
0.0012	15	125809	838726	Fail
0.0012	14	122857	877550	Fail
0.0013	14	119991	857078	Fail
0.0013	14	117382	838442	Fail
0.0013	14	114751	819650	Fail
0.0013	14	112141	801007	Fail
0.0013	13	109618	843215	Fail
0.0013	12	107372	894766	Fail
0.0014	12	105019	875158	Fail
0.0014	12	102730	856083	Fail
0.0014	12	100527	837725	Fail
0.0014	12	98367	819725	Fail
0.0014	12	96357	802975	Fail
0.0015	12	94303	785858	Fail
0.0015	12	92271	768925	Fail
0.0015	12	90346	752883	Fail
0.0015	12	88464	737200	Fail
0.0015	12	86603	721691	Fail
0.0016	12	84742	706183	Fail
0.0016	12	83010	691750	Fail
0.0016	12	81384	678200	Fail
0.0016	11	79695	724500	Fail
0.0016	11	78048	709527	Fail
0.0017	11	76444	694945	Fail
0.0017	11	/5011	681918	Fail
0.0017	11	/3513	668300	Fail
0.0017	11	/1995	654500	Fail
0.0017	11	70519	641081	Fail
0.0018	11	69150	628636	Fail
0.0018	11	67760	616000	Fail
0.0018	11	66305	602772	Fail
0.0018	11	64936	590327	Fall
0.0018	11	63653	578663	Fall
0.0019	11	62327	566609	Fall
0.0019	11	61022	554745	Fall
0.0019	11	59739	543081	Fall
0.0019	11	2024 I	532190	Fall
0.0019	11	013ZZ 56104	521109	Fail
0.0020	11	5/026	010210 400207	Fall
0.0020	11	04920 50057	433321 100600	Fall
0.0020	11	50001	409009 170500	Fail
0.0020	11	52740	419000	Fall
0.0020	11	51075	409112	Fail
0.0021	11	10649	400440	Fail
0.0021	11	49043	431300	ган

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

(.)

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Pagin 1	
0.24ac	

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END START 1948 10 01 2009 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <-----File Name---->*** <File> <Un#> * * * <-ID-> 26 WDM Harbor Grove Model Retaining Area.wdm MESSU 25 PreHarbor Grove Model Retaining Area.MES 27 PreHarbor Grove Model Retaining Area.L61 PreHarbor Grove Model Retaining Area.L62 28 30 POCHarbor Grove Model Retaining Areal.dat END FILES OPN SEOUENCE INGRP INDELT 00:15 7 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 1 2 30 MAX 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 7 1 1 27 0 A/B, Lawn, Flat 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 7 0 0 1 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO
 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 7
 0
 0
 0
 0
 0
 0
 1
 9
 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 7
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWATER input info: Part 2***I.Z.SNINFILTLSURSLSURKVARY1.000.050.3 PWAT-PARM2 <PLS > AGWRC # - # ***FOREST LZSN INFILT 0 7 0.996 END PWAT-PARM2 PWAT-PARM3 PWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN INFEXP 7 0 0 2 INFILD DEEPFR BASETP AGWETP 0 0 7 2 2 0 0 END PWAT-PARM3 PWAT-PARM4 PWATER input info: Part 4 * * * <PLS > CEPSC UZSN NSUR 0.1 0.5 0.25 INTFW 0 IRC 0.7 LZETP *** # - # - - - 0.1 7 0.25 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS GWVS 3 7 0 0 0 0 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC * * * END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 0.24 COPY 501 12 0.24 COPY 501 13 PERLND 7 PERLND 7 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Onit Systems Printer # - #<----> User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS * * * DB50 <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section # *** *** ac-ft <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 0.8 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 0.8 IMPLND 1 999 EXTNL PREC <Name> # # ***

END IMPLND

WDM	1	EVAP	ENGL	().76		PERLND	1	999	EXTNL	PETINE)	
WDM	1	EVAP	ENGL	(0.76		IMPLND	1	999	EXTNL	PETINE)	
END EXI	SOU	JRCES											
EXT TAR	GETS	5											
<-Volum	ıe−>	<-Grp>	<-Member	<u>^-><</u>	<mu< td=""><td>lt>Tran</td><td><-Volur</td><td>ne-></td><td><mer< td=""><td>nber></td><td>Tsys Tga</td><td>ap Amd '</td><td>* * *</td></mer<></td></mu<>	lt>Tran	<-Volur	ne->	<mer< td=""><td>nber></td><td>Tsys Tga</td><td>ap Amd '</td><td>* * *</td></mer<>	nber>	Tsys Tga	ap Amd '	* * *
<name></name>	#		<name> ‡</name>	‡ #<	<-fac	tor->strg	<name></name>	#	<nar< td=""><td>ne></td><td>tem str</td><td>g strg'</td><td>* * *</td></nar<>	ne>	tem str	g strg'	* * *
COPY FND FYT	501 ' TAF	OUTPUT	MEAN 1	l 1		48.4	WDM	501	FLO	N.	ENGL	REPL	
		(0110											
MASS-LI	NK												
<volume< td=""><td>2></td><td><-Grp></td><td><-Member</td><td><u>^-><</u></td><td><−-Mu</td><td>llt></td><td><target< td=""><td>:></td><td></td><td><-Grp</td><td>> <-Memb</td><td>er->***</td><td>*</td></target<></td></volume<>	2>	<-Grp>	<-Member	<u>^-><</u>	<−-Mu	llt>	<target< td=""><td>:></td><td></td><td><-Grp</td><td>> <-Memb</td><td>er->***</td><td>*</td></target<>	:>		<-Grp	> <-Memb	er->***	*
<name></name>			<name> ‡</name>	‡ #<	<-fac	tor->	<name></name>				<name></name>	• # #***	*
MASS-	LINF	<	12										
PERLND		PWATER	SURO		0.08	3333	COPY			INPUT	MEAN		
END M	IASS-	-LINK	12										
MASS-	LINF	ζ	13										
PERLND		PWATER	IFWO		0.08	3333	COPY			INPUT	MEAN		
END M	IASS-	-LINK	13										

END MASS-LINK

END RUN

(F A

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 2009 09 30 START 1948 10 01 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <-----File Name---->*** <File> <Un#> * * * <-ID-> 26 WDM Harbor Grove Model Retaining Area.wdm MESSU 25 MitHarbor Grove Model Retaining Area.MES 27 MitHarbor Grove Model Retaining Area.L61 MitHarbor Grove Model Retaining Area.L62 28 30 POCHarbor Grove Model Retaining Areal.dat END FILES OPN SEOUENCE INGRP INDELT 00:15 16 PERLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 1 2 30 MAX 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 1 1 27 0 16 C, Lawn, Flat 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

 16
 0
 1
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 16
 0
 0
 0
 0
 0
 1
 9

 END PRINT-INFO

PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 16
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWATER input info: Part 2 *** 79N INFILT LSUR SLSUR 100 0.05 PWAT-PARM2 <PLS > KVARY AGWRC # - # ***FOREST LZSN INFILT 0 4.5 0.03 0.5 16 400 0.05 0.996 END PWAT-PARM2 PWAT-PARM3 PWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN INFEXP 6 0 0 2 INFILD DEEPFR BASETP AGWETP 0 0 16 2 0 0 END PWAT-PARM3 PWAT-PARM4 PWATER input info: Part 4 * * * <PLS > CEPSC UZSN NSUR 0.1 0.25 0.25 INTFW 6 IRC 0.5 LZETP *** # - # 16 0.1 0.25 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # -# *** CEPS SURS UZS IFWS LZS AGWS GWVS 16 0 0 0 0 2.5 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name-----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC * * * END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1

SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 0.24 COPY 501 12 0.24 COPY 501 13 PERLND 16 PERLND 16 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO * * * RCHRES Name Nexits Onit Systems Printer # - #<----> User T-series Engl Metr LKFG * * * * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY $\langle \langle \rangle$ PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS * * * DB50 <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name WDM 2 PREC ENGL 0.8 PERLND 1 999 EXTNL PREC WDM 2 PREC ENGL 0.8 IMPLND 1 999 EXTNL PREC <Name> # # ***

END IMPLND

WDM	1 EVAP	ENGL	0.76	PERLND	1	999 EXTNI	L PETINP	
WDM	1 EVAP	ENGL	0.76	IMPLND	1	999 EXTNI	L PETINP	
END EXT S	SOURCES							
EXT TARGE	ETS							
<-Volume-	-> <-Grp>	<-Member	-> <mult>Tran</mult>	<-Volum	e->	<member></member>	Tsys Tgap	Amd ***
<name></name>	# _	<name> #</name>	#<-factor->strg	<name></name>	#	<name></name>	tem strg	strg***
COPY	1 OUTPUT	MEAN 1	1 48.4	WDM	701	FLOW	ENGL	REPL
COPY 50)1 OUTPUT	MEAN 1	1 48.4	WDM	801	FLOW	ENGL	REPL
END EXT I	FARGETS							
MASS-LTNK	ζ							
<volume></volume>	<-Grn>	<-Member	-> <mult></mult>	< Target	>	<-Grr	os <-Member	~->***
<name></name>	(Grbi	<name> #</name>	# -factor->	<name></name>	-		<name> ±</name>	 ± ±***
MASS-LI	INK	12		-italic)			-Humer 1	1 11
PERLND	PWATER	SURO	0.083333	COPY		INPU	r mean	
END MAS	SS-LINK	12				-		
MASS-LI	INK	13						
PERLND	PWATER	IFWO	0.083333	COPY		INPU	r mean	
END MAS	SS-LINK	13						

END MASS-LINK

END RUN

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com