

September 19, 2016

City of Mukilteo Attention: Linda Ritter, Associate Planner 11930 Cyrus Way Mukilteo, WA 98275

Re: **Pacific Seafood – Mukilteo Facility** *Request for Additional Information* Project Number 2160231.00

Dear Linda:

In response to your request for additional information dated December 22, 2015, we have addressed the items below, with our responses following your comments.

PLANNING DEPARTMENT:

The Planning Department has conducted a preliminary review of the development plans for Pacific Seafood and has the following comments:

1. Show all parking stalls including the ones for the delivery trucks.

Response: Please refer to the architectural site plan (Sheet R1.0) and the civil site plan (Sheet C-1.0), which have been revised to show all parking stalls, including the ones for delivery trucks along the east property line and along the north façade of the proposed building.

2. Provide a site plan similar to the one on sheet A1.0 but using an engineering scale rather than an architect scale for review.

Response: The architectural site plan (Sheet R1.0) has been revised to 1":20' scale. The civil site plan (Sheet C-1.0) and the Paving Improvements Plan are 1":30' scale.

3. The Planning Department cannot complete its review until the Development Agreement has been approved. Additional comments may be provided at that time.

Response: The building height has been revised to 35' per the building elevation certificate provided by Terrane, Inc. and dated July 6, 2016. As no other deviations from the Chapter 17B.20 Mukilteo Municipal Code (MCC) – Bulk Regulations are proposed or have been identified, the Development Agreement is no longer part of the development proposal.

ENGINEERING DEPARTMENT:

General

1. In accordance with our Development Standards, street improvements shall be required, see Chapter 3 for requirements. The street improvements include, but are not limited to, dedication of right-of-way, a planter strip,

P 206.749.9993 • F 206.749.5565 • W MCKNZE.COM • Logan Building, 500 Union Street, #545, Seattle, WA 98101 ARCHITECTURE • INTERIORS • STRUCTURAL ENGINEERING • CIVIL ENGINEERING • LAND USE PLANNING • TRANSPORTATION PLANNING • LANDSCAPE ARCHITECTURE Portland, Oregon • Vancouver, Washington • Seattle, Washington

curb and gutter, sidewalk, bike lane and an ADA ramp on the northwest corner of the property. The standards can be found at: http://www.ci.mukilteo.wa.us/files//doc-development%20standards.pdf. 44th Ave W is an Urban Collector road when referring to the minimum design standards in Table A and B.

Response: Please refer to the new off-site civil sheets CR-1.0 – CH-1.1 for the off-site improvements, which have been designed in accordance with City of Mukilteo and WSDOT standards, as applicable.

2. One access point per parcel of property shall be permitted, see Development Standards page 16. **Response:** One site access point is provided, plus a fire-only access located south of the proposed building.

3. The northwest corner of the property, where the vacated portion of 80th Street SW fronts Parcel #00611600009700, is not part of the Pacific Seafoods property, please correct.

Response: Project survey has been revised by GeoDimensions (now Terrane) and is included in the drawing set..

4. The basic description describes 11 loading bays, the plans show 15. Please resubmit the basic description to include the additional 4 bays.

Response: All plans have been revised to reflect **13** loading bays.

5. A Transportation Concurrency Evaluation and Determination of Transportation Impact Fees Form shall be filled out and stamped by a traffic engineer. See attached form.

Response: The Transportation Concurrency Evaluation and Determination of Transportation Impact Fees Form is currently being completed by the traffic consultant and will be transmitted under separate cover as soon as it is available.

PacLand Stormwater Site Plan dated December 7, 2015

1. Generally, the document does not reference correct Appendices. For ease of further review, correct the Appendix references in the Plan on subsequent submittals.

Response: Appendices have been revised. Please refer to the revised Stormwater Site Plan (SSP).

2. This project discharges to a wetland, identified in the Stormwater Site Plan as a "wet depression". Minimum Requirement #8 applies to "projects whose stormwater discharges into a wetland, either directly or indirectly through a conveyance system." The current downstream analysis does not address the wetland area for the proposed discharge. An analysis of the wetland is required, following guidance in Minimum Requirement #8 of the Stormwater Management Manual for Western Washington (SWMMWW).

Response: We have analyzed the proposed stormwater detention facility in accordance with Minimum Requirement #8 and the Guide Sheet 3B. Please refer to the revised SSP for additional detail regarding the system.

3. The project area must include the required frontage improvements for purposes of stormwater calculations. Threshold discharge areas shall be defined for the site and identified in the plan set. Corresponding WWHM reports shall be included in the Site Plan.

Response: The frontage improvements have been included in the stormwater calculations. Please refer to the revised SSP report for detailed stormwater analysis.

4. There is a WWHM Report included at the back of the report (under Appendix E Operations and Maintenance Checklists). Clarification of which part of the project this report addresses is required. Additionally, the output does not meet the flow control requirements. The stormwater design must meet the flow control requirements.

Response: Please refer to the revised SSP report.

5. No flow control calculations (beyond what are shown in the report mentioned in #4 above) are included in the report. All WWHM and other model outputs for flow control and water quality treatment are required for project review.

Response: Please refer to the revised SSP report.

6. The calculations for the Water Quality treatment System need to be submitted for review and need to follow Department of Ecology's approved hydraulic loading rate for the Perk filter.

Response: Water Quality treatment is provided via an on-site biofiltration swale. Please refer to Sheet C-2.0 Drainage Plan and refer to the revised SSP report for detailed calculations.

7. Per Mukilteo Development Standards Item X (page 35) an oil water separator is required for the parking area. **Response:** An oil-water separator is provided by means of the flow control restrictor, which is equivalent to the Mukilteo Development Standard Plan 4-040-002 Flow Restrictor/Oil Pollution Debris Control Device, Tee Type (Frop-T) Installation.

8. Appendix K references BMP standards from the 2005 SWMMWW. These need to be revised to reference the standards found in the 2012 SWMMWW.

Response: BMP standards have been updated to the 2012 Manual standards. The O&M manual is now Appendix E.

9. Appendix L includes reference to the outdated Stormwater Site Plan dated September 2, 2015. This needs to be rectified.

Response: Appendix L has been deleted.

10. The Operations and Maintenance Checklists found in Appendix E are not City of Mukilteo standards. Use the standards found in the 2012 SWMMWW for all non-proprietary stormwater features. Include manufacturer's standards for any proprietary stormwater features.

Response: The Operations and Maintenance Checklists have been updated.

Plan Set dated 10/28/2015 and 12/7/2015 (Sheet C-2.0)

1. A Curb Ramp compliant with the Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way, July 26, 2011 (the 2011 version of the PROWAG) is required on the northwest corner of the property at the intersection of 80th.

Response: A combination curb ramp with detectable warning has been added near the north end of the property.

- 2. The stop sign and stop bar are in the middle of the fire entrance.**Response:** The stop sign and stop bar are in the middle of the fire entrance.
- 3. The fire entrance taper ends on the north side and does not continue to the street. **Response:** The fire entrance has been relocated to the south end of the site.
- 4. The driveways and fire entrance do not meet up with the street, as well as the pavement is not shown to be extended to meet the sidewalk, and there is no curb or gutter shown. See above general comment for required frontage improvements.

Response: These items are now shown and/or are corrected in the plan set. Please refer to the off-site drawings for additional information.

5. The ditch is not called out to be removed/filled in and no detail is shown for the elimination of the ditch. **Response:** Please refer to the new off-site drawings for details showing the ditch grading and pipe under the new improvements.

6. Extend sidewalk to meet up with existing sidewalk to the south.

Response: The proposed sidewalk meets up with the existing sidewalk to the south.

- 7. Sheet C-1.0:
 - a. Details are missing for Site Key I and L.
 - b. Add detectable warning to south side of south entrance.
 - c. Refer to WSDOT Standard Details for Site Key and change/add those standards on Sheet C-1.1.
 - D F-30.10-03 E – F-10.12-03 F – F-10.12-03 M – F-45.10-01 O – F-80.10-03

Response: The applicable details have been referenced on the plans. Detectable warnings are referenced on the plans.

- 8. Sheet C-1.1:
 - a. General Note #13, remove this note, the site will be required to keep their NPDES Construction Stormwater General Permit #WAR012632 in place and active during the project.
 - b. Add WSDOT Standard Details to match Sheet C-1.1.

Response: General Notes have been updated per City of Mukilteo standards. Utilized WSDOT standard details have been added to the on-site and off-site sheets.

9. Because the original grading and TESC plan set was submitted on 10/16/2015, under Permit #ENG-2015-020, and because there are revisions to the sediment pond in the current Stormwater Site Plan, new grading and TESC plans need to be submitted for review under this Engineering permit. These need to be consistent with the Stormwater Site Plan.

Response: The TESC plan and pond have been revised for the current site plan and are consistent with the SSP.

- 10. Sheet C-2.0:
 - a. A portion of the stormwater discharge pipe is not on the property (See General Note #3 above). Provide evidence of easement for the proposed stormwater pipe location.
 - b. Some areas of the site appear to bypass the proposed detention system. Provide evidence that all runoff is treated according to the Minimum Requirements
 - c. Roof drain tie-ins to the stormwater system need to be shown.

Response: The storm drainage pipe has been relocated to the existing easement established for this storm outfall pipe. The stormwater system has also been revised for the new site plan, and runoff is treated in accordance with minimum requirements. Roof drain tie-ins are shown on the drainage plan, Sheet C-2.0.

- 11. Sheet C2.4: An example configuration for the Stormchamber is presented. Detailed plans for the Stormchamber installation are required for review. Note that the Stormchamber design cannot include any infiltration (per Geotechnical report). Details shall include:
 - Inlet and outlet connection detail a.
 - b. Inspection port details
 - Clean out riser detail с.

Response: The proposed detention system is shown as a two-bay detention vault. Due to the detailed stormwater analysis required for the downstream wetland, and the subsequent modelling results, the structural details of the vault have not been finalized. The vault will be fully detailed upon City approval of the stormwater modelling and vault sizing results.

12. The project does show adequate flow control. Flow control is required.

Response: Please refer to Sheet C-2.0 and the revised SSP for flow control and analysis information.

ENGINEERING PERMIT CONDITIONS

1. Evidence of coverage by Department of Ecology NPDES Construction permit is required prior to permit issuance. **Response:** The DOE Construction Stormwater General Permit is active and can be verified on the DOE website.

2. A recorded permanent grant of access easement allowing City personnel to inspect the stormwater system will be required.

Response: An easement will be recorded allowing access. If the City has standard easement language, please provide to Pacific Seafood.

3. The above Engineering Review Comments may be an incomplete list of items. The developer should review all submittals for compliance with the City's current requirements prior to submittal.

Response: Noted. Compliance with the City's current requirements will be confirmed prior to submittal of the **Engineering Permit.**

Please contact me if you have any questions.

Sincerely,

Lie Ch

Michael Chen, LEED Green Associate Senior Associate – Land Use Planning

Enclosure(s):

- (3) Building Elevation Certificate, Terrane, Inc. July 16, 2016
 - (3) Stormwater Site Plan, Navix Engineering, rev. September 15, 2016
 - (3) Architectural Plans, Mackenzie, September 16, 2016
 - (3) Civil Plans, Navix Engineering, September 16, 2016
- Joe Taflin Navix Engineering c: Paul Kisling, Daniel Novick, Gary Yao - Mackenzie

City of Mukilteo, Washington **CERTIFICATION OF MEAN GROUND LEVEL FOR DETERMINING BUILDING HEIGHT**

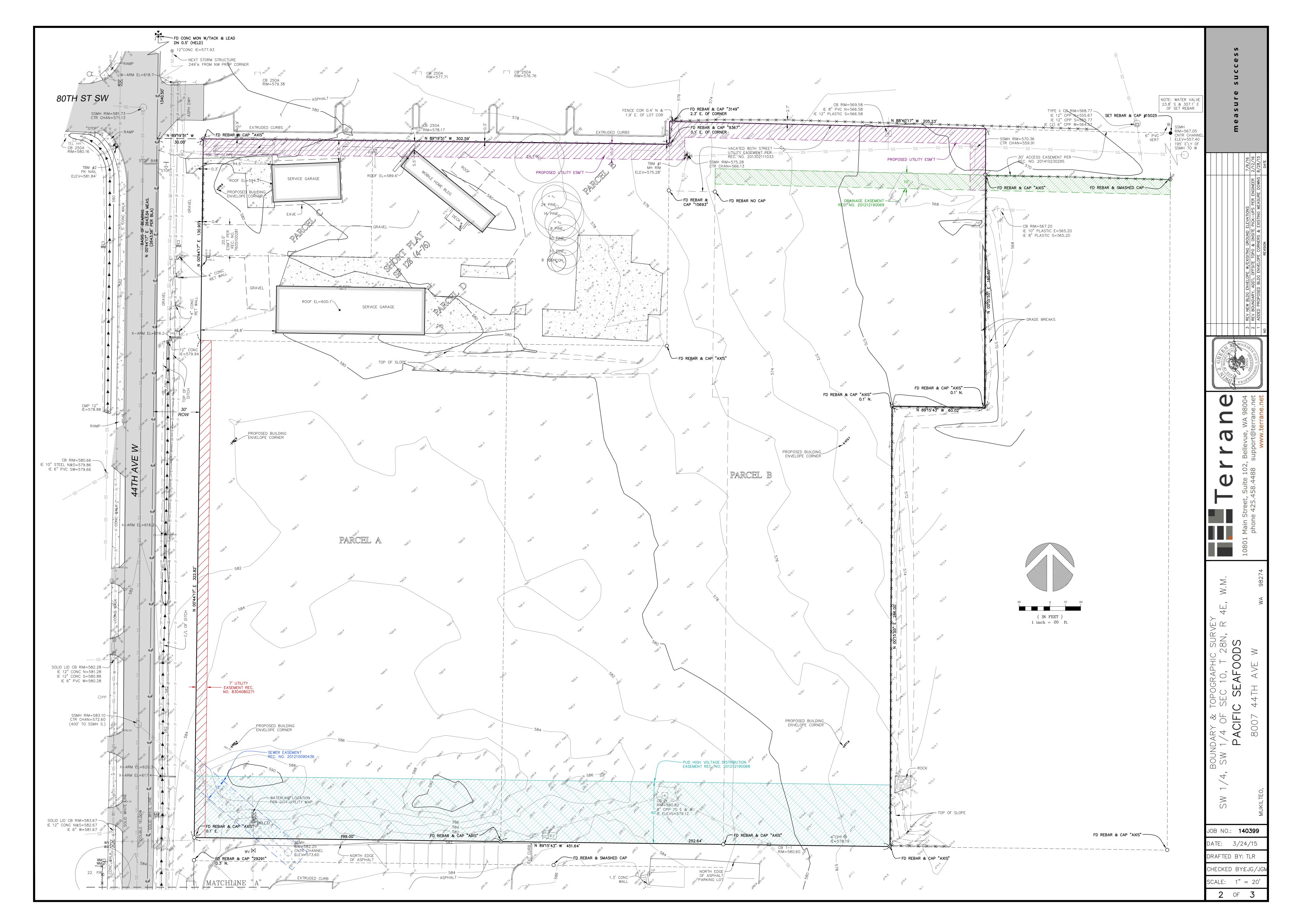
I certify that I have read and understand Chapter 17.08. of the Mukilteo Municipal Code (MMC) regarding the determination of building heights. I further certify that I measured the undisturbed (as of the date specified in the Ordinances) ground level of 8007 44th Ave W, Mukilteo, WA,

according to the above code and found the arithmetic mean height to be 4.42 feet above a permanent bench mark shown on the attached survey, MH Rim on the Northeastern portion of the property.

I further certify that the height of the proposed building for parcels: 28041000301800, 28041000303000, 0061160000980 & 00611600009701 is 35 feet as defined by Chapter 17.08 of the MMC.

Note: Attach map showing bench mark and elevations of all points used to determine mean ground level. This document must be signed and stamped by a Licensed Professional Land Surveyor.

Signature


Company: Terrane, Inc.

Address: 10801 Main Street, Suite 102 Bellevue, WA 98004

Phone: 425-455-4488

7/6/16 Date

STORMWATER DRAINAGE REPORT

PACIFIC SEAFOOD MUKILTEO, WA

September 15, 2016 Initial: November 30, 2015	Prepared for: City of Mukilteo	Reviewed by: Joe Taflin, P.E. Principal joe@navixeng	
		11400 s.e. 8th street, suite 345 bellevue, wa 98004 navixeng.com	t 425.453.9501 f 425.453.8208 e info@navixeng.com

TABLE OF CONTENTS

SECTION PAGE		
Proposed Improvi Design Criteria Jurisdictional rec	I	1 1 1
MINIMUM REQUIR	MENTS	4
	DNS	B
DEVELOPED COND	TIONS	B
Existing Site Hyde Developed Site Hy Hydrologic Mod Flow Control Sy Water Quality Sy Conveyance Systi Downstream Ana 100-Year Flood/G	MWATER CONTROL PLAN PLOGY DROLOGY PROLOGY DROLOGY PROLOGY ING PROLOGY	99008999
	2	
OPERATION AND I	AINTENANCE	7
APPENDIX A	SITE EXHIBITS	
APPENDIX B	GEOTECHNICAL REPORTS	
APPENDIX C	WWHM REPORT	
APPENDIX D	CONVEYANCE ANALYSIS	
APPENDIX E	OPERATIONS AND MAINTENANCE CHECKLISTS	

PROJECT OVERVIEW

PROPOSED IMPROVEMENTS

The proposed development consists of the construction of a single commercial building with parking for trucks and cars, an access roadway, stormwater management facilities, utilities, and onsite landscaping on a 4.98-acre site in Mukilteo, Washington. The property is currently zoned as planned industrial.

DESIGN CRITERIA

The City of Mukilteo utilizes the 2012 Washington State Department of Ecology Stormwater Management Manual for Western Washington (DOE Manual) drainage requirements. Stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The pre-developed condition to be matched shall be a pastured land cover. Additionally, the site is tributary to an existing wetland and shall meet the Wetland Protection Guidelines Criterion 1 and 2.

JURISDICTIONAL REQUIREMENTS

Table 1 below summarizes City of Mukilteo stormwater requirements.

TABLE 1		
Jurisdictional Requirements		
Duration Analysis:		
2-year:	Reduce to ½ pre-developed duration	
50-year:	Match pre-developed	
Downstream Wetland	Criteria 1: ±20% of daily volume	
Protection:	Criteria 2: ±15% of monthly volume	
Water Quality Volume:	n/a	
Water Quality Flow Rate:	0.45 CFS	
Downstream Analysis:		
Level 1:	1⁄4 mile downstream	

SUBBASINS, AND SITE CHARACTERISTICS:

SUBBASIN

The site is located within a single basin with upstream property tributary via sheet flow. The proposed drainage system consists of a system of catch basins and underground storm drainage pipes that will convey the stormwater runoff from the paved and roof surfaces to a bioswales(s) and a detention vault located in the northwest portion of the site. Runoff will receive water quality treatment and be controlled released to an existing type II structure 80th Street SW (vacated right-of-way), which eventually discharges to the Puget Sound.

Soils

Per the Geotechnical Investigation Report by Redmond Geotechnical Services, dated April 24, 2015, the site is underlain by glacial till consisting of non-sorted mixture of clay, silt, sandy pebbles and cobbles. The Soil Conservation Service has mapped the site as Alderwood-Urban land complex, 2-8% slope, classified as Type B soils for stormwater runoff but will be modeled as C type soils per site and geotechnical recommendation. Infiltration of stormwater is limited to 0.30"/hr per letter dated July 29, 2016. Groundwater was not encountered within depths of 20 feet on the site.

PROJECT LOCATION

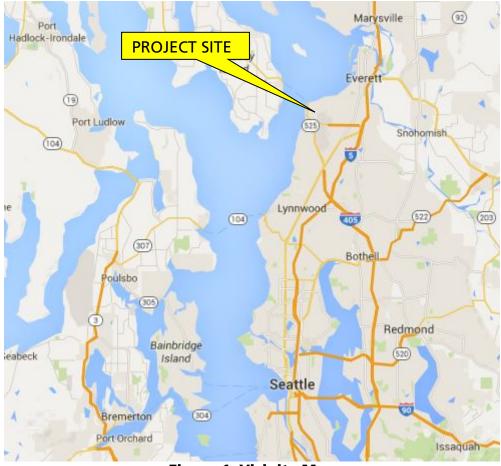


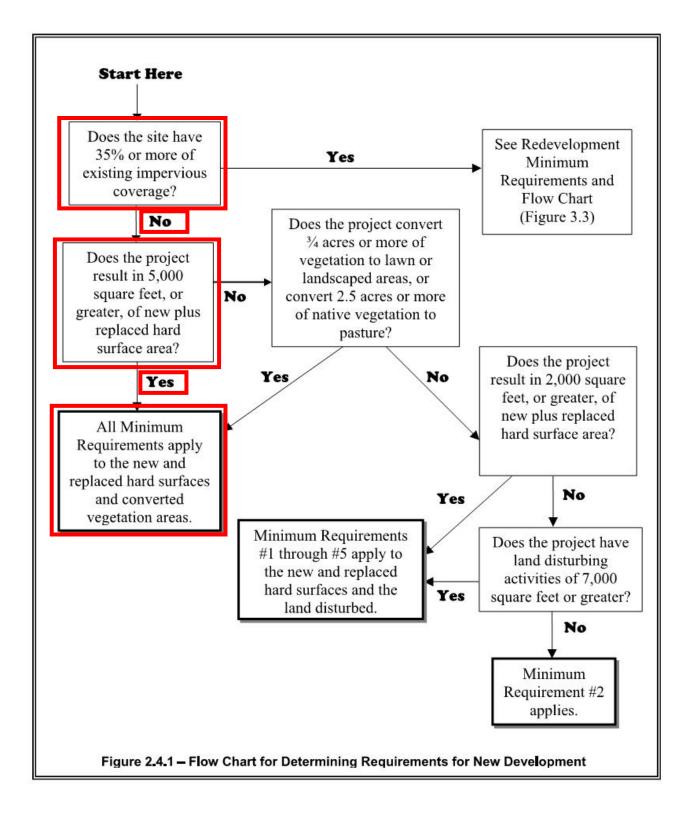
Figure 1: Vicinity Map

Location: 8007 44th Avenue West Mukilteo, WA, 98274

Section, Township, Range: SW 1/4, SW 1/4 OF SEC 10, T 28N, R 4E, W.M.

Tax Account Number: 0061160000980, 00611600009701, 28041000301800, 28041000303000 & 28041000301700.

Size: 217,099 SF (4.98 AC) – 10' ROW Dedication = 212,562 (4.88 AC)


City, County, State: Mukilteo, Snohomish County, Washington State

Governing Agency: City of Mukilteo

Design Criteria: 2012 Washington State Department of Ecology Stormwater Management Manual for Western Washington

Zoning: PI (Planned Industrial)

MINIMUM REQUIREMENTS

Minimum Requirement #1: Preparation of Stormwater Site Plans

All projects meeting the thresholds in Section 2.4 shall prepare a Stormwater Site Plan for local government review. Stormwater Site Plans shall use site-appropriate development principles, as required and encouraged by local development codes, to retain native vegetation and minimize impervious surfaces to the extent feasible.

Response: A stormwater site plan has been prepared for the development in the form of this report. The stormwater site plan includes the existing and proposed stormwater conditions, WWHM output report, supporting reports, and the SWPPP.

Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPPP)

All new development and redevelopment projects are responsible for preventing erosion and discharge of sediment and other pollutants into receiving waters.

Projects which result in 2,000 square feet or more of new plus replaced hard surface area, or which disturb 7,000 square feet or more of land must prepare a Construction Stormwater Pollution Prevention Plan (SWPPP) as part of the Stormwater Site Plan (see Section 2.5.1). Projects that result in less than 2,000 square feet of new plus replaced hard surface area, or disturb less than 7,000 square feet of land are not required to prepare a Construction SWPPP, but must consider all of the 13 Elements of Construction Stormwater Pollution Prevention and develop controls for all elements that pertain to the project site.

Response: The 13 elements of a SWPPP are addressed in the Construction SWPPP section of this report. A full Construction SWPPP and NPDES permit have been prepared for the site.

Minimum Requirement #3: Source Control of Pollution

All known, available and reasonable source control BMPs shall be applied to all projects. Source control BMPs shall be selected, designed, and maintained according to the manual.

Response: All available and reasonable source control BMPs have applied to this project. These include, but are not limited to, Dust Control at Disturbed Land Areas, Landscaping and Lawn/Vegetation Management and Maintenance of Stormwater Drainage and Treatment Systems.

Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls

Natural drainage patterns shall be maintained, and discharges from the project site shall occur at the natural location, to the maximum extent practicable. The manner by which runoff is discharged from the project site must not cause a significant adverse impact to downstream receiving waters and downgradient properties. All outfalls require energy dissipation.

Response: Runoff from the proposed project will discharge to a new on-site conveyance system that will connect downstream at an existing structure in vacated 80th Street SW. From there, stormwater is conveyed north until it discharges to the existing man-made wetland, the existing point of discharge. The right-of-way stormwater system is designed to keep the right-of-way stormwater runoff separate from the onsite system. An existing roadside ditch along the sites right-of-way will be conveyed in a closed pipe and catch basin system.

Minimum Requirement #5: On-site Stormwater Management

Projects shall employ On-site Stormwater Management BMPs in accordance with the following projects thresholds, standards, and lists to infiltrate, disperse, and retain stormwater runoff on-site to the extent feasible without causing flooding or erosion impacts. Projects qualifying as flow control exempt in accordance with Section 2.5.7 of this chapter do not have to achieve the LID performance standard, nor consider bioretention, rain gardens, permeable pavement, and full

dispersion if using List #1 or List #2. However, those projects must implement BMP T5.13; BMPs T5.10A, B, or C; and BMP T5.11or T5.12, if feasible.

Project Thresholds:

Projects triggering only Minimum Requirements #1 through #5 shall either:

- a. Use On-site Stormwater Management BMPs from List #1 for all surfaces within each type of surface in List #1; or
- b. Demonstrate compliance with the LID Performance Standard. Projects selecting this option cannot use Rain Gardens. They may choose to use Bioretention BMPs as described in Chapter 7 of Volume V to achieve the LID Performance Standard.

Projects triggering Minimum Requirements #1 through #9, must meet the requirements in Table 2.5.1.

Response: On-site stormwater runoff will be collected and transported via a system of catch basins and underground storm pipes to an onsite biofiltration facility, then routed to a stormwater vault. A portion of the site (passenger car parking area) will be routed to supplemental biofiltration facilities (parking area planter strips). The detained stormwater will flow from the vault at the historical discharge rate to the existing downstream collection point. Low-impact-development (LID) infiltration is limited due to the low infiltration rate through-out the site. The long term infiltration rate onsite is 0.30" per hour as specified by the project geotechnical engineer.

Minimum Requirement #6: Runoff Treatment

Thresholds

When assessing a project against the following thresholds, only consider those hard and pervious surfaces that are subject to this minimum requirement as determined in Section 2.4 of this chapter. The following require construction of stormwater treatment facilities:

- Projects in which the total of, pollution-generating hard surface (PGHS) is 5,000 square feet or more in a threshold discharge area of the project, or
- Projects in which the total of pollution-generating pervious surfaces (PGPS) not including permeable pavements is three-quarters (3/4) of an acre or more in a threshold discharge area, and from which there will be a surface discharge in a natural or man-made conveyance system from the site.

Response: Stormwater will be treated with the use of a bioretention swale per BMP T9.10.

Minimum Requirement #7: Flow Control

Projects must provide flow control to reduce the impacts of stormwater runoff from hard surfaces and land cover conversions. The requirement below applies to projects that discharge stormwater directly, or indirectly through a conveyance system, into a fresh waterbody. Flow Control is not required for projects that discharge directly to, or indirectly to a water listed in Appendix I-E.

Response: The proposed stormwater system includes a detention vault that is sized for the entire project area, using the WWHM3 program.

Minimum Requirement #8: Wetlands Protection

The requirements below apply only to projects whose stormwater discharges into a wetland, either directly or indirectly through a conveyance system.

Thresholds:

The thresholds identified in Minimum Requirement #6 – Runoff Treatment, and Minimum Requirement #7 – Flow Control shall also be applied to determine the applicability of this requirement to discharges to wetlands.

Standard Requirement:

Projects shall comply with Guide Sheets #1 through #3 in Appendix I-D. They hydrologic analysis shall use the existing hydrologic conditions unless directed otherwise by a regulatory agency with jurisdiction.

Response: The stormwater vault is sized to meet the guide sheets to the maximum extent feasible as described in more detail below

Minimum Requirement #9: Operation and Maintenance

An operation and maintenance manual that is consistent with the provisions in Volume V of this manual shall be provided for all proposed stormwater facilities and BMPs, and the party (or parties) responsible for maintenance and operation shall be identified. At private facilities, a copy of the manual shall be retained onsite or within reasonable access to the site, and shall be transferred with the property to the new owner. For public facilities, a copy of the manual shall be retained in the appropriate department. A log of maintenance activity that indicates what actions were taken shall be kept and be available for inspection by the local government.

Response: Operations and Maintenance checklists for the proposed storm drainage system facilities have been included in Appendix E.

EXISTING CONDITIONS

The project site is located at 8007 44th Avenue West Mukilteo, WA, 98274. The site is approximately 217,099 SF (4.98 acres) and is currently occupied by a mobile home with two detached service garages. There is approximately 25,688 SF (0.59 acres) of existing impervious area, and the remainder of the site consists of pasture.

Per the Geotechnical Engineering Report by Redmond Geotechnical Services, dated May 1st, 2015, the site is underlain with 2'-4' of gray to gray-brown, dense, clayey, silty sand with gravel and cobbles and/or glacial till deposits.

The site is bordered to the east by an empty field, to the west by 44th Avenue West, to the north by an existing commercial development, and to the south by another commercial development. The majority of the project site is generally sloping to the northeast corner of the site at an average of 2%. A portion of the property to the south is tributary to the site with approximately 1.03 acres (0.93ac impervious and 0.10ac lawn). This upstream area currently sheet flows onsite and will continue to in the developed conditions.

SOILS CONDITIONS

Per the Geotechnical Engineering Report by Redmond Geotechnical Services, dated May 1st, 2015, the site is underlain at a depth of between two to four feet beneath the existing site and/or surface grades by gray to gray-brown, dense, clayey, silty sand with gravel and cobbles and/or glacial till deposits.

DEVELOPED CONDITIONS

The proposed development consists of the construction of a single commercial building totaling approximately 62,166± SF (1.43 acres) with parking stalls, stormwater management facilities, utilities and on-site landscaping on a 4.98-acre site in Mukilteo, Washington. The property is currently zoned as planned industrial.

The upstream area (1.03 acres) will be collected in a proposed ditch along the southern property line, where the runoff will be collected and conveyed in the proposed conveyance system.

On-site and the upstream stormwater runoff will be collected and transported via a system of catch basins and storm pipes to a biofiltration swale and underground detention vault. A portion of the site (passenger car parking area) will be routed to supplemental biofiltration facilities (parking area planter strips) for increased site infiltration only. Low-impact-development (LID) infiltration is limited due to the low infiltration rate through-out the site of 0.30" per hour as specified by the project geotechnical engineer.

The released stormwater will flow in a conveyance system to an existing catch basin northeast of the project site. See the Permanent Stormwater Control Plan section for further information about the conveyance system.

PERMANENT STORMWATER CONTROL PLAN

EXISTING SITE HYDROLOGY

The project site is approximately 217,099 SF (4.98 acres) – 10' ROW Dedication = 212,562 (4.88 AC) and is currently occupied by a mobile home with two detached service garages. There is approximately 25,688 SF (0.59 acres) of existing impervious area, and the remainder of the site consists of overgrown fields. See table 2 and 3 below, for existing conditions of the onsite and upstream basin. The upstream existing tributary basin consists of 0.93 acres of impervious and 0.10 acres of lawn for a total of 1.03 acres.

Basin Area (AC)	Description	Grade
0.59	Impervious (buildings and parking/drive)	Flat
0.41	Lawn (area around mobile home)	Flat
1.94	Pasture (1/2 cleared site)	Moderate
1.94	Forest (1/2 cleared site)	Moderate
4.88	Total Onsite	
<u>+1.03</u>	<u>Upstream Basin</u>	
5.91	Total to downstream connection point	

Table 2 – Onsite Existing Basin

Table 3 – ROW Existing Basin

Basin Area (AC)	Description	Grade
0.02	Impervious (pavement)	Flat
0.29	Lawn (ditch and shoulder)	Flat
0.10	Pasture (dedicated area)	Flat
0.42	Total	

DEVELOPED SITE HYDROLOGY

The proposed on-site development will consist of paved parking and drive aisles, concrete walkways, a building, and landscaping/pervious surface. The right-of-way improvements consist of ½ street widening and curb, gutter, and sidewalk along the sites frontage (323'). See Table 4 and 5 for proposed conditions.

Table 4 - Onsite Developed Basin		
Basin Area (AC)	Description	Grade
2.73	Impervious (parking/drive and walkways)	Flat
1.43	Impervious (building)	Flat
0.72	Lawn (not covered with impervious)	Flat
4.88	Total	
<u>+1.03</u>	<u>Upstream Basin</u>	
5.91	Total to downstream connection point	

Basin Area (AC)	Description	Grade
0.32	Impervious (pavement and sidewalk)	Flat
0.10	Lawn (planter strip)	Flat
0.42	Total	

Table 5 – ROW Developed Basin

HYDROLOGIC MODELING

The hydrologic analysis for the project was performed using the computer-modeling program, Western Washington Hydrology Model (WWMH2012), based on matching flow durations and wetland protection volumes. The program effectively models predeveloped and post-developed runoff conditions using basins for a given area. An infiltration rate of 0.30" per hour has been used at the parking lot and site swales and 0.15" per hour at the vault (bottomless) to enhance the natural stormwater release. The WWHM2012 model for the project site states that current stormwater conveyance system meets 2012 Department of Ecology Stormwater Management Manual standards and City of Mukilteo development standards. See Appendix C for the WWHM report.

FLOW CONTROL SYSTEM

In the developed condition, onsite stormwater runoff will be drained in several areas.

- The building (1.43 acres) will be directly connected to the vault.
- The northwest parking area (1.35 acres) drains to one of five swales located in the center island parking area. These swales are connected to the onsite conveyance system via a catch basin at the low point of the swale. Each ditch has a bottom width of 4' and a length of 65'. The swales are for groundwater recharge only and are not considered for water quality.
- The upstream area (1.03 acres) is tributary to the site via a proposed ditch along the southern boundary. The ditch is connected to the onsite conveyance system that is tributary to the biofiltration swale and vault.
- The onsite conveyance system (4.48 acres) is tributary to the water quality biofiltration swale in the northeast portion of the site. The swale is connected to the site vault. The swale is 30' (three sections each 10') wide and 100' long with a slope of 1.6%
- The entire site (biofiltration swale and building roof) is tributary to the underground vault (4.48 acres + 1.43 acres = 5.91 acres) that discharges stormwater east of the property. The vault has a live storage volume of 50,400 cubic feet (40' wide x 120' long x 10.5' tall).

Existing Site Basin including Upstream Area

Name : Ext Basin

Pervious Land Use	acre
C, Forest, Mod	1.94
C, Pasture, Mod	1.94
C, Lawn, Flat	.51
Pervious Total	4.39
Impervious Land Use	acre
ROADS FLAT	0.59
DRIVEWAYS FLAT	0.93
Impervious Total	1.52
Basin Total	5.91

Developed Site Basin including Upstream area

Name :	Parking
--------	---------

Pervious Land Use C, Lawn, Flat	acre .08
Pervious Total	0.08
Impervious Land Use	acre
ROADS FLAT	1.27
Impervious Total	1.27
Basin Total	1.35

Name : BUILDING

<u>Pervious Land Use</u>	acre
Pervious Total	0
Impervious Land Use	<u>acre</u>
ROOF TOPS FLAT	1.43
Impervious Total	1.43
Basin Total	1.43

Name : Dev Site

Pervious Land Use C, Lawn, Flat Pervious Total	<u>acre</u> .74 0.74
Impervious Land Use ROADS FLAT	acre 1.46
DRIVEWAYS FLAT	0.93
Impervious Total	2.39
Basin Total	3.13

Water Quality Swale

```
: Biofiltration Swale
Name
Bottom Length: 100.00 ft.
Bottom Width: 30.00 ft.
Manning's n: 0.24
Channel bottom slope 1: 0.016 To 1
Channel Left side slope 0: 3 To 1
Channel right side slope 2: 3 To 1
Infiltration On
Infiltration rate: 0.3
Infiltration safety factor: 1
Wetted surface area On
Total Volume Infiltrated (ac-ft.): 107.018
Total Volume Through Riser (ac-ft.): 324.122
Total Volume Through Facility (ac-ft.): 431.14
Percent Infiltrated: 24.82
Total Precip Applied to Facility: 0
Total Evap From Facility: 0
```

Stormwater Vault

Infiltration safety factor: 2 Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft.					
Length : 120 ft. Depth: 11 ft. Infiltration On Infiltration rate: 0.3 Infiltration safety factor: 2 Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Name : Vault 1				
<pre>Depth: 11 ft. Infiltration On Infiltration rate: 0.3 Infiltration safety factor: 2 Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.</pre>	Width: 40 ft.				
Infiltration On Infiltration rate: 0.3 Infiltration safety factor: 2 Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Length : 120 ft.				
Infiltration rate: 0.3 Infiltration safety factor: 2 Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Depth: 11 ft.				
Infiltration safety factor: 2 Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Infiltration On				
Total Volume Infiltrated (ac-ft.): 383.527 Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Infiltration rate: 0.3				
Total Volume Through Riser (ac-ft.): 109.45 Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Infiltration safety factor: 2				
Total Volume Through Facility (ac-ft.): 492.977 Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Total Volume Infiltrated (ac-ft.): 383.527				
Percent Infiltrated: 77.8 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Total Volume Through Riser (ac-ft.): 109.45				
Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Total Volume Through Facility (ac-ft.): 492.977				
Total Evap From Facility: 0 <u>Discharge Structure</u> Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Percent Infiltrated: 77.8				
Discharge Structure Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Total Precip Applied to Facility: 0				
Riser Height: 10.5 ft. Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Total Evap From Facility: 0				
Riser Diameter: 12 in. Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Discharge Structure				
Orifice 1 Diameter: 2 in. Elevation: 0.5 ft. Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Riser Height: 10.5 ft.				
Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.	Riser Diameter: 12 in.				
	Drifice 1 Diameter: 2 in. Elevation: 0.5 ft.				
Drifice 3 Diameter: 6 in. Elevation: 9.7 ft.	Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.				
	Orifice 3 Diameter: 6 in. Elevation: 9.7 ft.				

Point of Compliance (outlet of vault)

Groundwater element is not part of matching flow durations and has been removed in this analysis to show compliance with requirements.

Flow Frequency	Return	Periods	for	Predeveloped	1. :	POC	#2
Return Period		Flow(cfs)				
2 year		0.5213	5				
5 year		0.7215	03				
10 year		0.8704	4				
25 year		1.0781	79				
50 year		1.2477	15				
100 year		1.4304	24				
Flow Frequency	Return	Periods	for	Mitigated.	POC	#2	
Return Period		Flow(cfs)				
2 year		0.1577	33				
5 year		0.1939	59				
-		0.1939 0.2195					
5 year			47				
5 year 10 year		0.2195	47 12				
5 year 10 year 25 year		0.2195	47 12 21				
5 year 10 year 25 year 50 year		0.2195 0.2537 0.2805	47 12 21				
5 year 10 year 25 year 50 year	ion Dura	0.2195 0.2537 0.2805 0.3085	47 12 21				
5 year 10 year 25 year 50 year 100 year	ion Dura	0.2195 0.2537 0.2805 0.3085	47 12 21				

The Facility PASSED The Facility PASSED.

Point of Compliance (wetland)

Per Guide Sheet 3B of the 2014 SMMWW, the following criteria need to also be met;

- Criteria 1: Total volume of water into a wetland during a single precipitation event should not be more than 20% higher or lower than the pre-project volumes.
- Criteria 2: Total volume of water into a wetland on a monthly basis should not be more than 15% higher or lower than the pre-project volumes.

Using the same vault and orifice control structure as described above, we applied the Guide Sheet 3B criteria, which requires groundwater flow (in addition to the traditional surface flow and interflow) to be accounted for in pervious surface areas in the pre-project and post-project conditions.

Infiltration is the means by which groundwater flow to the mitigated wetland is simulated. Per the geotechnical engineer, the site is underlain by glacial till soils, which provides very limited infiltration in the order of 0.30"/hour. As the tributary area from Sterling Business Park is over 800' away from the mitigated wetland area, groundwater flow from this area to the mitigated wetland will be minimal to none. Therefore, no groundwater flow was assigned to the upstream Sterling Business Park tributary area. Groundwater flow was assigned, however, to the on-site pervious surface areas in the pre- and post-project conditions. In the pre-project conditions, all on-site landscaped areas (lawn, pasture and forest) are assigned groundwater flow through infiltration. In the post-project condition, there are several means by which infiltration, and therefore groundwater flow, is accounted for:

- All landscaped areas allow for infiltration
- The proposed detention vault is bottomless and, therefore, allows for infiltration (0.15"/hr)
- The proposed bio-infiltration swale is the primary source of water quality treatment and allows for infiltration (0.30"/hr)
- The proposed bio-infiltration swales in the main parking lot for infiltration (0.30"/hr)

Using the pre-project and post-project conditions described above, we ran the WWHM model using the 40' wide x 120' long x 11' deep bottomless vault with a 3-orifice control structure, the westerly bio-infiltration swale, and the bio-infiltration swales in the main parking lot. The results, shown below, show that we are able to meet the Criteria 1 monthly volumes 5 out of the 12 months. No other combination of elements that we have tried has yielded a better result, so we conclude that we have met this criterion to the maximum extent feasible.

Criterion #1:

Day	Predevel	Mitigated	Percent	Pass/Fail					
1Jan	1.9782	2.5853	130.7	Fail	15	1.6377	1.4233	86.9	Pass
2	1.716	1.8668	108.8	Pass	16	1.7101	1.8102	105.9	Pass
3	1.6232	1.7095	105.3	Pass	17	1.7719	1.5448	87.2	Pass
4	2.1245	2.1535	101.4	Pass	18	1.6268	1.5478	95.1	Pass
5	1.8222	2.0618	113.1	Pass	19	1.5036	1.0703	71.2	Fail
6	1.933	2.0236	104.7	Pass	20	1.7494	1.4704	84	Pass
7	2.1764	2.6171	120.3	Fail	21	1.5416	1.493	96.9	Pass
8	1.926	2.0399	105.9	Pass	22	1.4971	1.1565	77.2	Fail
9	1.7305	1.7285	99.9	Pass	23	1.8842	1.7301	91.8	Pass
10	1.5137	1.3027	86.1	Pass	24	1.7972	1.7585	97.8	Pass
11	1.5196	1.3844	91.1	Pass	25	1.6311	1.3162	80.7	Pass
12	1.6149	1.5174	94	Pass	26	1.4906	1.1399	76.5	Fail
13	2.0566	2.2375	108.8	Pass	27	1.6154	1.324	82	Pass
14	1.8869	2.1409	113.5	Pass	28	1.5404	1.0455	67.9	Fail
15	1.9455	1.8261	93.9	Pass	29	1.6683	1.5424	92.5	Pass
16	1.8824	2.0304	107.9	Pass	1-	1.6271	1.3832	85	Pass
17	2.2085	2.0372	92.2	Pass	2	1.6414	1.4239	86.7	Pass
18	1.9664	2.0307	103.3	Pass	3	1.5747	1.439	91.4	Pass
19	1.7437	1.6745	96	Pass	4	1.4288	0.9304	65.1	Fail
20	1.6716	1.4734	88.1	Pass	5	1.096	0.6434	58.7	Fail
21	1.7161	1.5457	90.1	Pass	6	1.3852	1.15	83	Pass
22	1.9029	1.9673	103.4	Pass	7	1.3308	1.0721	80.6	Pass
23	2.0901	2.2292	106.7	Pass	8	1.6908	1.8599	110	Pass
24	1.5867	1.5119	95.3	Pass	9	1.4622	1.2087	82.7	Pass
25	1.5649	1.1898	76	Fail	10	1.5657	1.3635	87.1	Pass
26	1.4173	1.032	72.8	Fail	11	1.5039	1.1883	79	Fail
27	1.6644	1.5293	91.9	Pass	12	1.3699	1.0742	78.4	Fail
28	1.9381	2.0415	105.3	Pass	13	1.3149	0.9927	75.5	Fail
29	1.9183	1.8908	98.6	Pass	14	1.3938	1.091	78.3	Fail
30	1.7715	1.5951	90	Pass	15	1.3622	1.1319	83.1	Pass
31	1.6572	1.5439	93.2	Pass	16	1.3616	1.0685	78.5	Fail
1-	1.522	1.2601	82.8	Pass	17	1.4021	1.0998	78.4	Fail
2	1.3563	0.857	63.2	Fail	18	1.343	1.0839	80.7	Pass
3	1.6034	1.3957	87	Pass	19	1.3348	1.1695	87.6	Pass
4	1.6012	1.3289	83	Pass	20	1.1088	0.691	62.3	Fail
5	1.5962	1.4823	92.9	Pass	21	1.4436	1.303	90.3	Pass
6	1.48	1.1564	78.1	Fail	22	1.4471	1.4916	103.1	Pass
7	1.7728	1.5818	89.2	Pass	23	1.3452	1.114	82.8	Pass
8	1.3628	1.0955	80.4	Pass	24	1.3011	1.0367	79.7	Fail
9	1.2882	0.9047	70.2	Fail	25	1.4295	1.2491	87.4	Pass
10	1.3454	1.0132	75.3	Fail	26	1.1827	0.8766	74.1	Fail
11	1.6352	1.4706	89.9	Pass	27	1.2975	1.038	80	Pass
12	1.5978	1.5884	99.4	Pass	28	1.2045	0.917	76.1	Fail
13	1.5119	1.2754	84.4	Pass	29	1.0961	0.843	76.9	Fail
14	1.5308	1.3814	90.2	Pass	30	1.161	0.9155	78.9	Fail
					31	1.1768	0.96	81.6	Pass

1-Apr	1.1266	0.8624	76.5	Fail	17	0.5905	0.3372	57.1	Fail
2	1.1652	0.9893	84.9	Pass	18	0.6747	0.5667	84	Pass
3	1.2569	1.1611	92.4	Pass	19	0.6726	0.7922	117.8	Pass
4	1.203	1.0569	87.9	Pass	20	0.6009	0.5545	92.3	Pass
5	1.132	0.8982	79.3	Fail	21	0.5118	0.2765	54	Fail
6	0.9781	0.5796	59.3	Fail	22	0.5521	0.348	63	Fail
7	1.2129	1.1714	96.6	Pass	23	0.6277	0.653	104	Pass
8	1.0168	0.7585	74.6	Fail	24	0.5658	0.5044	89.2	Pass
9	1.0173	0.6783	66.7	Fail	25	0.6339	0.5734	90.5	Pass
10	1.1631	1.0285	88.4	Pass	26	0.745	0.869	116.7	Pass
11	1.2036	1.0933	90.8	Pass	27	0.6389	0.7772	121.7	Fail
12	1.0768	0.9378	87.1	Pass	28	0.6941	0.6066	87.4	Pass
13	0.8895	0.6308	70.9	Fail	29	0.6155	0.8576	139.3	Fail
14	1.0108	0.7506	74.3	Fail	30	0.9174	1.0462	114	Pass
15	1.1889	1.1631	97.8	Pass	31	0.5785	0.7892	136.4	Fail
16	0.9933	0.835	84.1	Pass	1-Jun	0.6827	0.5969	87.4	Pass
17	0.9022	0.4969	55.1	Fail	2	0.7757	0.8746	112.8	Pass
18	1.1593	1.0426	89.9	Pass	3	0.6161	0.7268	118	Pass
19	0.9603	0.9417	98.1	Pass	4	0.5898	0.4841	82.1	Pass
20	0.6908	0.1727	25	Fail	5	0.5918	0.4095	69.2	Fail
21	0.7669	0.3221	42	Fail	6	0.6946	0.6331	91.1	Pass
22	1.0888	0.7617	70	Fail	7	0.6059	0.5752	94.9	Pass
23	0.9889	1.0984	111.1	Pass	8	0.5883	0.5392	91.7	Pass
24	0.8244	0.5659	68.6	Fail	9	0.8894	0.9622	108.2	Pass
25	0.7249	0.3378	46.6	Fail	10	0.6644	1.0203	153.6	Fail
26	0.9329	0.7332	78.6	Fail	11	0.6683	0.7108	106.4	Pass
27	0.9407	0.9716	103.3	Pass	12	0.5455	0.5085	93.2	Pass
28	0.8963	0.6503	72.6	Fail	13	0.4078	0.147	36	Fail
29	0.8744	0.8719	99.7	Pass	14	0.4771	0.2642	55.4	Fail
30	0.7288	0.4561	62.6	Fail	15	0.5873	0.4977	84.7	Pass
1-May	0.7546	0.4671	61.9	Fail	16	0.6802	0.7863	115.6	Pass
2	0.7743	0.6217	80.3	Pass	17	0.6273	0.64	102	Pass
3	0.7025	0.4901	69.8	Fail	18	0.5934	0.6019	101.4	Pass
4	0.8055	0.7796	96.8	Pass	19	0.4478	0.2175	48.6	Fail
5	0.6912	0.5325	77	Fail	20		0.3457		Fail
6	0.5209	0.2184	41.9	Fail	21	0.5561			Fail
7	0.6116	0.3145	51.4	Fail	22	0.5455		104.7	Pass
8	0.6096	0.3781	62	Fail	23	0.6931			Pass
9	0.8547	0.8215	96.1	Pass	24	0.6075	0.7599		Fail
10	0.8765	1.0674	121.8	Fail	25	0.5109	0.588	115.1	Pass
11	0.6398	0.4475	69.9	Fail	26	0.505	0.3549		Fail
12	0.7114	0.6282	88.3	Pass	27	0.4318			Fail
13	0.7351	0.5496	74.8	Fail	28	0.5893	0.5572		Pass
14	0.6097	0.6694	109.8	Pass	29	0.4836		80.3	Pass
15	0.6855	0.6618	96.6	Pass	30	0.5921	0.5032	85	Pass
16	0.5044	0.2567	50.9	Fail					

1-Jul	0.6001	0.8988	149.8	Fail	16	0.33	0.3097	93.8	Pass
2	0.5327	0.4727	88.7	Pass	17	0.4177	0.4709	112.7	Pass
3	0.4076	0.2073	50.9	Fail	18	0.4886	0.5415	110.8	Pass
4	0.4887	0.4577	93.7	Pass	19	0.3194	0.4966	155.5	Fail
5	0.3621	0.2469	68.2	Fail	20	0.2698	0.0683	25.3	Fail
6	0.3725	0.1016	27.3	Fail	21	0.5135	0.6768	131.8	Fail
7	0.4654	0.4883	104.9	Pass	22	0.6051	0.7434	122.9	Fail
8	0.5043	0.402	79.7	Fail	23	0.4358	0.8405	192.9	Fail
9	0.3555	0.244	68.6	Fail	24	0.3706	0.4663	125.8	Fail
10	0.4152	0.1548	37.3	Fail	25	0.5236	0.5862	112	Pass
11	0.3541	0.2568	72.5	Fail	26	0.4795	0.8577	178.9	Fail
12	0.4492	0.333	74.1	Fail	27	0.3784	0.5217	137.9	Fail
13	0.3759	0.3253	86.6	Pass	28	0.3323	0.2284	68.7	Fail
14	0.327	0.1118	34.2	Fail	29	0.3406	0.2645	77.7	Fail
15	0.5722	0.5856	102.4	Pass	30	0.398	0.5124	128.7	Fail
16	0.3816	0.4257	111.6	Pass	31	0.4931	0.4911	99.6	Pass
17	0.2993	0.0892	29.8	Fail	1-Sep	0.3468	0.5669	163.5	Fail
18	0.4258	0.3521	82.7	Pass	2	0.3362	0.3366	100.1	Pass
19	0.3733	0.2713	72.7	Fail	3	0.3363	0.3382	100.6	Pass
20	0.2826	0.066	23.4	Fail	4	0.3319	0.2612	78.7	Fail
21	0.3603	0.1895	52.6	Fail	5	0.5186	0.6448	124.3	Fail
22	0.2921	0.0913	31.3	Fail	6	0.3542	0.501	141.4	Fail
23	0.2863	0.0332	11.6	Fail	7	0.4199	0.5233	124.6	Fail
24	0.328	0.1273	38.8	Fail	8	0.4808	0.7553	157.1	Fail
25	0.4295	0.3962	92.2	Pass	9	0.549	0.8937	162.8	Fail
26	0.3211	0.2459	76.6	Fail	10	0.5032	1.0573	210.1	Fail
27	0.3496	0.1687	48.3	Fail	11	0.2419	0.1837	76	Fail
28	0.3181	0.2082	65.5	Fail	12	0.3576	0.292	81.7	Pass
29	0.2616	0.0191	7.3	Fail	13	0.442	0.5395	122.1	Fail
30	0.264	0.0085	3.2	Fail	14	0.4075	0.688	168.9	Fail
31	0.2702	0.0473	17.5	Fail	15	0.5039	0.6655	132.1	Fail
1-Aug	0.2712	0.0418	15.4	Fail	16	0.6775	1.1858	175	Fail
2	0.2906	0.0817	28.1	Fail	17	0.3168	0.596	188.1	Fail
3	0.3019	0.1039	34.4	Fail	18	0.4168	0.4503	108.1	Pass
4	0.302	0.1742	57.7	Fail	19	0.462	0.6245	135.2	Fail
5	0.4677	0.3782	80.9	Pass	20	0.3376		148.1	Fail
6	0.4518	0.5712	126.4	Fail	21	0.5663	0.6629	117	Pass
7	0.2608	0.2932	112.4	Pass	22	0.5044	0.9215	182.7	Fail
8	0.3001	0.1484	49.5	Fail	23	0.425	0.688	161.9	Fail
9	0.2543	0.0333	13.1	Fail	24	0.3621	0.4706	130	Fail
10	0.2704	0.0886	32.7	Fail	25	0.4116	0.5594	135.9	Fail
11	0.298	0.1062	35.6	Fail	26	0.3855		118	Pass
12	0.4106	0.3577	87.1	Pass	27	0.3846			Fail
13	0.3281	0.3723	113.5	Pass	28	0.3813			Pass
14	0.4761	0.4282	89.9	Pass	29	0.4824			Fail
15	0.3753	0.5355	142.7	Fail	30	0.4979	0.653	131.1	Fail

1-0ct	0.3979	0.6158	154.7	Fail	16	1.1922	2.1126	177.2	Fail
2	0.4762	0.7558	158.7	Fail	17	1.1849	1.9086	161.1	Fail
3	0.6001	0.8231	137.2	Fail	18	1.6504	2.6875	162.8	Fail
4	0.5165	0.9445	182.9	Fail	19	1.7801	3.1522	177.1	Fail
5	0.6813	1.2191	178.9	Fail	20	1.387	2.6484	190.9	Fail
6	0.5105	1.0566	207	Fail	21	1.1321	1.5417	136.2	Fail
7	0.6891	1.1247	163.2	Fail	22	1.3844	1.7519	126.5	Fail
8	0.5783	1.0993	190.1	Fail	23	1.9232	2.988	155.4	Fail
9	0.5514	0.8892	161.3	Fail	24	1.9656	3.3653		Fail
10	0.5223	0.9492	181.7	Fail	25	1.2571	1.9285	153.4	Fail
11	0.4475	0.6876	153.6	Fail	26	1.4747	2.0306	137.7	Fail
12	0.5019	0.7315	145.7	Fail	27	1.207	1.6833	139.5	Fail
13	0.5206	0.7452	143.1	Fail	28	1.5176	2.1075	138.9	Fail
14	0.4468	0.6925	155	Fail	29	1.7183	2.4133	140.4	Fail
15	0.592	1.0698	180.7	Fail	30	1.7292	2.6915	155.6	Fail
16	0.7535	1.256	166.7	Fail	1-Dec	1.5718	2.3128	147.1	Fail
17	0.5522	1.2197	220.9	Fail	2	2.0133	2.582	128.3	Fail
18	0.8081	1.4337	177.4	Fail	3	1.8153	2.9111		Fail
19	0.937	1.866	199.1	Fail	4	1.8676	2.6418	141.5	Fail
20	0.7431	1.5061	202.7	Fail	5	1.7074	2.4976	146.3	Fail
21	0.7087	1.4439	203.7	Fail	6	1.3769	1.7687	128.5	Fail
22	0.7033	1.192	169.5	Fail	7	1.4069	1.7525	124.6	Fail
23	0.7941	1.3828	174.1	Fail	8	1.5356	1.8632	121.3	Fail
24	0.7392	1.5243	206.2	Fail	9	1.6581	2.1996	132.7	Fail
25	0.9448	1.6433	173.9	Fail	10	1.7436	2.2695	130.2	Fail
26	0.8303	1.678	202.1	Fail	11	1.9318	2.504	129.6	Fail
27	0.8849	1.8765	212.1	Fail	12	1.611	2.069	128.4	Fail
28	0.596	0.946	158.7	Fail	13	1.844	1.8878	102.4	Pass
29	0.7017	1.1253	160.4	Fail	14	2.2765	3.1499	138.4	Fail
30	0.6126	1.096	178.9	Fail	15	1.895	2.5318	133.6	Fail
31	0.8242	1.2911	156.6	Fail	16	1.6108	2.0125	124.9	Fail
1-Nov	0.7308	1.4609	199.9	Fail	17	1.4738	1.6191	109.9	Pass
2	0.9597	1.4493	151	Fail	18	1.7	1.6618	97.8	Pass
3	1.1244	2.4429	217.3		19		2.2423		
4	0.813	1.5969	196.4	Fail	20	1.769			Pass
5	0.7926	1.5279	192.8	Fail	21	1.5774			Pass
6	0.8247	1.404	170.2	Fail	22	1.6832			Pass
7	0.817	1.3515	165.4	Fail	23	1.7936			Pass
8	0.9562	1.7315	181.1	Fail	24	1.7823	1.858	104.2	Pass
9	1.1175	2.1172	189.5	Fail	25	1.7357	2.0261		Pass
10	1.1805	2.2245	188.4	Fail	26	1.8739	2.1868		Pass
11	1.3997	2.7101	193.6	Fail	27	1.5018			Pass
12	1.3032	2.4794	190.3	Fail	28	1.745	1.8038		Pass
13	1.0721	2.0524	191.4	Fail	29	1.6144			Pass
14	1.1512	1.7479	151.8	Fail	30	1.6168			Pass
15	1.1693	2.0642	176.5	Fail	31	2.1521	2.2722	105.6	Pass

Passing 154/366 days

C ''	•	"
Crite	rinn	エノ・
CITC		

Wetlands Fluctuation for POC 2					
Average Annual Volume (acft)					
Month	Predevel	Mitigated	Percent	Pass/Fail	
Jan	56.7626	57.2357	100.8	Pass	
Feb	44.7226	38.3868	85.8	Pass	
Mar	42.8724	35.3850	82.5	Fail	
Apr	30.5624	24.5171	80.2	Fail	
May	20.8575	18.1198	86.9	Pass	
Jun	17.7223	16.9998	95.9	Pass	
Jul	12.1480	8.4821	69.8	Fail	
Aug	11.5317	11.3460	98.4	Pass	
Sep	12.7366	17.5419	137.7	Fail	
Oct	19.8396	35.2393	177.6	Fail	
Nov	37.0098	61.9618	167.4	Fail	
Dec	53.2630	65.8296	123.6	Fail	

Passing 5/12 months

WATER QUALITY SYSTEM

Onsite stormwater will be routed through a water quality biofiltration swale. The swale is sized per BMP T9.10. The following equations size the swale using given the WWHM2012 inflow:

Water quality flowrate at POC 1 (inlet to bioswale)

```
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.3032 acre-feet
On-line facility target flow: 0.4518 cfs.
Adjusted for 15 min: 0.4518 cfs.
Off-line facility target flow: 0.2566 cfs.
Adjusted for 15 min: 0.2566 cfs.
```

<u>Step A – Compute the Flow Velocity</u>

 $V = K \times Q/A$

Where:	V = Flow velocity into swale (fs) K = Ratio of the peak volumetric flow rate for on-line facility
	Q = Water quality flow rate for on-line facility (cfs) A = Cross sectional area of trapezoidal channel (sf)

<u>Step B – Compute Length</u>

 $L = V \times T$ (60 sec/min)

Where: L = Length of swale (cf) V = Flow velocity of swale (fs) T = Time (T=9 minutes)

 $L = 0.09 \times 9 \times 60 = \text{feet}$ (required length)

= 49 feet Actual length is 100 feet, OK

<u>Step C – Calculate Flow Capacity at Greatest Resistance</u> Q = $1.49AR^{0.67}S^{0.5}/n$

Where:	Q = Flowrate (cfs) A = Cross sectional area of trapezoidal channel (sf)
	R = Hydraulic radius (f)
	S = Slope of swale (f)
	n = Manning's number

Q = 1.49 (15) $32^{0.67} 0.016^{0.5} / 0.24$ = cubic feet per second

= 120 cubic feet per second $Q \ge actual100$ -year flow, OK

The proposed biofiltration swale is 30' wide and 100' long at a slope of 1.6%.

CONVEYANCE SYSTEM ANALYSIS AND DESIGN

A full conveyance system analysis and design will be provided with the final land use and site development permit submittal.

DOWNSTREAM ANALYSIS

A formal downstream analysis was completed on October 16, 2015. Figure C in Appendix A shows the downstream analysis path from the project site to ¼ mile downstream. As discussed previously, the site slopes towards the northeast, and is conveyed offsite to the north via a system of pipes and culverts. Runoff ultimately discharges to Puget Sound.

Stormwater leaves the site from an existing Type-II 48-inch catch basin located in the northeast portion of the site. From this catch basin stormwater is conveyed in a 12" piped system to a manmade wetland and detention pond on the Mukilteo Public Works site. Stormwater leaves site crossing 78th Street SW where it combines with stormwater from the 44th Avenue West right-ofway basin and continues in a northerly direction. The combined flow travels in a swale past the ¹/₄ point where the analysis was terminated.

100-YEAR FLOOD/OVERFLOW CONDITION

The stormwater conveyance system for this project has been designed to address storm events in accordance with common industry practices. In the event of a larger storm, the system may fail. In this case, the runoff from larger events will overflow the control structure in the proposed detention vault, and flow to the intended discharge point, the existing catch basin to the northeast.

CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN

All erosion and sediment control measures shall be governed by the requirements of the City of Mukilteo. A temporary erosion and sedimentation control plan has been prepared to assist the contractor in complying with these requirements. The Erosion and Sediment Control (ESC) plan is included with the construction plans.

Element 1: Preserve Vegetation/Mark Clearing Limits

- Before beginning land disturbing activities, including clearing and grading, clearly mark all clearing limits, sensitive areas and their buffers, and trees that are to be preserved within the construction area.
- Retain the duff layer, native top soil, and natural vegetation in an undisturbed state to the maximum degree practicable.

Element 2: Establish Construction Access

- Limit construction vehicle access and exit to one route, if possible.
- Stabilize access points with a pad of quarry spalls, crushed rock, or other equivalent BMP's, to minimize tracking of sediment onto public roads.
- Locate wheel wash or tire baths on site, if stabilized construction entrance is not effective in preventing tracking sediment onto public roads.
- If sediment is tracked off site, clean the affected roadway thoroughly at the end of the say, or more frequently as necessary (for example, during wet weather). Remove sediment from roads by shoveling, sweeping, or pick up and transport the sediment to a controlled sediment disposal area.
- Conduct street washing only after sediment is removed in accordance with the above bullet.
- Control street wash wastewater by pumping back on-site, or otherwise prevent it from discharging into systems tributary to waters of the State.

Element 3: Control Flow Rates

- Protect properties and waterways downstream of development sites from erosion and the associated discharge of turbid waters due to increases in the velocity and peak volumetric flow rate of stormwater runoff from the project site.
- Where necessary to comply with the bullet above, construct stormwater retention or detention facilities s one of the first steps in grading. Assure that detention facilities function properly before constructing site improvements (e.g. impervious surfaces).
- If permanent infiltration ponds are used for flow control during construction, protect these facilities from siltation during the construction phase.

Element 4: Install Sediment Controls

- Design, install, and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants.
- Construct sediment control BMPs (sediment ponds, traps, filters, etc.) as one of the first steps in grading. These BMPs shall be functional before other land disturbing activities take place.
- Minimize sediment discharges from the site. The design, installation and maintenance of erosion and sediment controls must address factors such as the amount, frequency, intensity and duration of precipitation, the nature of resulting stormwater runoff, and soil characteristics, including the range of soil particle sizes expected to be present on the site.
- Direct stormwater runoff from disturbed areas through a sediment pond or other appropriate sediment removal BMP, before the runoff leaves a construction site or before discharge to an

infiltration facility. Runoff from fully stabilized areas may be discharged without a sediment removal BMP, but must meet the flow control performance standard in Element #3, bullet #1.

- Locate BMPs intended to trap sediment on-site in a manner to avoid interference with the movement of juvenile salmonids attempting to enter off-channel areas or drainages.
- Where feasible, design outlet structures that withdraw impounded stormwater from the surface to avoid discharging sediment that is still suspended lower in the water column.

Element 5: Stabilize Soils

- Stabilize exposed and unworked soils by application of effective BMPs that prevent erosion. Applicable BMPs include, but are not limited to: temporary and permanent seeding, sodding, mulching, plastic covering, erosion control fabrics and matting, soil application of polyacrylamide (PAM), the early application of gravel base early on areas to be paved, and dust control.
- Control stormwater volume and velocity within the site to minimize soil erosion.
- Control stormwater discharges, including both peak flow rates and total stormwater volume, to minimize erosion at outlets and to minimize downstream channel and stream bank erosion.
- Soils must not remain exposed and unworked for more than the time periods set forth below to prevent erosion:
 - During the dry season (May 1 Sept. 30): 7 days
 - During the wet season (October 1 April 30): 2 days
- Stabilize soils at the end of the shift before a holiday or weekend if needed based on the weather forecast.
- Stabilize soil stockpiles from erosion, protected with sediment trapping measures, and where possible, be located away from storm drain inlets, waterways and drainage channels.
- Minimize the amount of soil exposed during construction activity.
- Minimize the disturbance of steep slopes.
- Minimize soil compaction and, unless infeasible, preserve topsoil.

Element 6: Protect Slopes

- Design and construct cut-and-fill slopes in a manner to minimize erosion. Applicable practices include, but are not limited to, reducing continuous length of slope with terracing and diversions, reducing slope steepness, and roughening slope surfaces (for example, track walking).
- Divert off-site stormwater (run-on) or ground water away from slopes and disturbed areas with interceptor dikes, pipes and/or swales. Off-site stormwater should be managed separately from stormwater generated on the site.
- At the top of slopes, collect drainage in pipe slope drains or protected channels to prevent erosion.
 - Temporary pipe slope drains must handle the peak 10-minute velocity of flow from a Type 1A, 10-year, 24-hour frequency storm for the developed condition. Alternatively, the 10-year and 1-hour flow rate predicted by an approved continuous runoff model, increased by a factor of 1.6, may be used. The hydrologic analysis must use the existing land cover condition for predicting flow rates from tributary areas outside the project limits. For tributary areas on the project site, the analysis must use the temporary or permanent project land cover condition, whichever will produce the highest flow rates.

If using the Western Washington Hydrology Model (WWHM) to predict flows, bare soil areas should be modeled as "landscaped" area.

- Place excavated material on the uphill side of trenches, consistent with safety and space considerations.
- Place check dams at regular intervals within constructed channels that are cut down a slope.

Element 7: Protect Drain Inlets

- Protect all storm drain inlets made operable during construction so that stormwater runoff shall not enter the conveyance system without first being filtered or treated to remove sediment.
- Clean or remove and replace inlet protection devices when sediment has filled one-third of the available storage (unless a different standard is specified by the product manufacturer).

Element 8: Stabilize Channels and Outlets

- Design, construct, and stabilize all on-site conveyance channels to prevent erosion from the following expected peak flows:
 - Channels must handle the peak 10-minute velocity of flow from a Type 1A, 10- year, 24-hour frequency storm for the developed condition. Alternatively, the 10-year, 1-hour flow rate indicated by an approved continuous runoff model, increased by a factor of 1.6, may be used. The hydrologic analysis must use the existing land cover condition for predicting flow rates from tributary areas outside the project limits. For tributary areas on the project site, the analysis must use the temporary or permanent project land cover condition, whichever will produce the highest flow rates. If using the Western Washington Hydrology Model (WWHM) to predict flows, bare soil areas should be modeled as "landscaped area.
- Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes and downstream reaches at the outlets of all conveyance systems.

Element 9: Control Pollutants

- Design, install, implement and maintain effective pollution prevention measures to minimize the discharge of pollutants.
- Handle and dispose of all pollutants, including waste materials and demolition debris that occur on-site in a manner that does not cause contamination of stormwater.
- Provide cover, containment, and protection from vandalism for all chemicals, liquid products, petroleum products, and other materials that have the potential to pose a threat to human health or the environment. On-site fueling tanks must include secondary containment. Secondary containment means placing tanks or containers within an impervious structure capable of containing 110% of the volume contained in the largest take within the containment structure. Double-walled tanks do not require additional secondary containment.
- Conduct maintenance, fueling, and repair of heavy equipment and vehicles using spill prevention and control measures. Clean contaminated surfaces immediately following any spill incident.
- Discharge wheel wash or tire bath wastewater to a separate on-site treatment system that prevents discharge to surface water, such as closed-loop recirculation or upland application, or to the sanitary sewer, with local sewer district approval.
- Apply fertilizers and pesticides in a manner and at application rates that will not result in loss of chemical to stormwater runoff. Follow manufacturers' label requirements for application rates and procedures.

- Use BMPs to prevent contamination of stormwater runoff by pH modifying sources. The sources
 for this contamination include, but are not limited to: bulk cement, cement kiln dust, fly ash,
 new concrete washing and curing waters, waste streams generated from concrete grinding and
 sawing, exposed aggregate processes, dewatering concrete vaults, concrete pumping and mixer
 washout waters.
- Adjust the pH of stormwater if necessary to prevent violations of water quality standards.
- Assure that washout of concrete trucks is performed off-site or in designated concrete washout areas only. Do not wash out concrete trucks onto the ground, or into storm drains, open ditches, streets, or streams. Do not dump excess concrete on-site, except in designated concrete washout areas. Concrete spillage or concrete discharge to surface waters of the State is prohibited.
- Obtain written approval from Ecology before using chemical treatment other than CO2 or dry ice to adjust pH.

Element 10: Control De-Watering

- Discharge foundation, vault, and trench de-watering water, which has similar characteristics to stormwater runoff at the site, into a controlled conveyance system before discharge to a sediment trap or sediment pond.
- Discharge clean, non-turbid de-watering water, such as well-point ground water, to systems tributary to, or directly into surface waters of the State, as specified in Element #8, provided the dewatering flow does not cause erosion or flooding of receiving waters. Do not route clean dewatering water through stormwater sediment ponds. Note that "surface waters of the State" may exist on a construction site as well as off site; for example, a creek running through a site.
- Handle highly turbid or otherwise contaminated dewatering water separately from stormwater.
- Other treatment or disposal options may include: 1. Infiltration, 2. Transport off-site in a vehicle, such as a vacuum flush truck, for legal disposal in a manner that does not pollute state waters, 3. Ecology-approved on-site chemical treatment or other suitable treatment technologies, 4. Sanitary or combined sewer discharge with local sewer district approval, if there is no other option, and 5. Use of a sedimentation bag with outfall to a ditch or swale for small volumes of localized dewatering.

Element 11: Maintain BMPs

- Maintain and repair all temporary and permanent erosion and sediment control BMPs as needed to assure continued performance of their intended function in accordance with BMP specifications.
- Remove all temporary erosion and sediment control BMPs within 30 days after achieving final site stabilization or after the temporary BMPs are no longer needed.

Element 12: Manage the Project

- Phase development projects to the maximum degree practicable and take into account seasonal work limitations.
- Inspection and monitoring Inspect, maintain and repair all BMPs as needed to assure continued performance of their intended function. Projects regulated under the Construction Stormwater General Permit must conduct site inspections and monitoring in accordance with Special Condition S4 of the Construction Stormwater General Permit.
- Maintaining an updated construction SWPPP Maintain, update, and implement the SWPPP.

- Projects that disturb one or more acres must have site inspections conducted by a Certified Erosion and Sediment Control Lead (CESCL). Project sites disturbing less than one acre may have a CESCL or a person without CESCL certification conduct inspections. By the initiation of construction, the SWPPP must identify the CESCL or inspector, who must be present on-site or on-call at all times.
- The CESCL or inspector (project sites less than one acre) must have the skills to assess the:
 - Site conditions and construction activities that could impact the quality of stormwater.
 - Effectiveness of erosion and sediment control measures used to control the quality of stormwater discharges.
- The CESCL or inspector must examine stormwater visually for the presence of suspended sediment, turbidity, discoloration, and oil sheen. They must evaluate the effectiveness of BMPs and determine if it is necessary to install, maintain, or repair BMPs to improve the quality of stormwater discharges.

Based on the results of the inspection, construction site operators must correct the problems identified by:

- Reviewing the SWPPP for compliance with the 13 construction SWPPP elements and making appropriate revisions within 7 days of the inspection.
- Immediately beginning the process of fully implementing and maintaining appropriate source control and/or treatment BMPs as soon as possible, addressing the problems not later than within 10 days of the inspection. If installation of necessary treatment BMPs is not feasible within 10 days, the construction site operator may request an extension within the initial 10-day response period.
- Documenting BMP implementation and maintenance in the site log book (sites larger than 1 acre).
- The CESCL or inspector must inspect all areas disturbed by construction activities, all BMPs, and all stormwater discharge points at least once every calendar week and within 24 hours of any discharge from the site. (For purposes of this condition, individual discharge events that last more than one day do not require daily inspections. For example, if a stormwater pond discharges continuously over the course of a week, only one inspection is required that week.) The CESCL or inspector may reduce the inspection frequency for temporary stabilized, inactive sites to once every calendar month.

ESC ANALYSIS AND DESIGN

Trapping Sediment

Structural control measures will be used to reduce erosion and retain sediment on the construction site. The control measures will be selected to fit specific site and seasonal conditions.

The following structural items will be used to control erosion and sedimentation processes:

- Stabilized construction entrances
- Filter fabric fences
- Catch Basin Inlet Sediment Protection
- Proper Cover measures
- Temporary swales
- Sediment pond/vault
- Rock check dam

Weekly inspection of the erosion control measures will be required during construction. Any sediment buildup shall be removed and disposed of off-site.

Vehicle tracking of mud off-site shall be avoided. Installation of a stabilized construction entrance will be installed at a location to enter the site. The entrances are a minimum requirement and may be supplemented if tracking of mud onto public streets becomes excessive. In the event that mud is tracked off site, it shall be swept up and disposed of off-site on a daily basis. Depending on the amount of tracked mud, a vehicle road sweeper may be required.

Because vegetative cover is the most important form of erosion control, construction practices must adhere to stringent cover requirements. More specifically, the contractor will not be allowed to leave soils open for more than 14 days and, in some cases, immediate seeding will be required season dependent.

Sediment Pond/Vault:

A temporary sediment pond and vault are proposed during construction to collect, contain and control release of any site runoff during construction. The pond will be constructed prior to construction of the permanent vault. The entire 5.91 acre site is tributary to the temporary pond. The sediment structure is sized according to design specifications per Section BMPC241: Temporary Sediment Pond of the DOE Manual. Using WWHM2012, the 10-year, flow based on the post development cleared conditions (lawn) and existing upstream. Below are the results:

TESC Pond Tributary Area: 5.91 acres

Flow Frequency					
Flow(cfs)	0501				
2 Year = 0.4654					
5 Year =	0.7564				
10 Year =	1.0013				
25 Year =	1.3787				
50 Year =	1.7149				
100 Year =	2.1035				

The required surface area was calculated using the following equation:

 $SA = 2 \times Q_{10} / 0.00096$ = 2 x 1.00 / 0.00096

= 2083 sf

This equation results in a surface area of 2,083 SF. The pond was designed with a surface area of 2,200 SF at the top of the sediment storage, which exceeds the minimum requirements for the 2-year flow. The required area of the orifice was calculated using the following equation:

 $A_o = A_s(2h)^{0.5} / 0.6 \times 3600 Tq^{0.5}$ $=2.083 \times (2(3.5))^{0.5} / [0.6 \times 3600 \times 24 \times 32.2^{0.5}]$ $= 0.0187 \, sf$

Converted to the required diameter using the following calculation:

 $D = 13.54 \times Ao^{0.5}$ $= 13.54 \times 0.0187^{0.5}$ = 1.85" \[] 1 - 3/4"

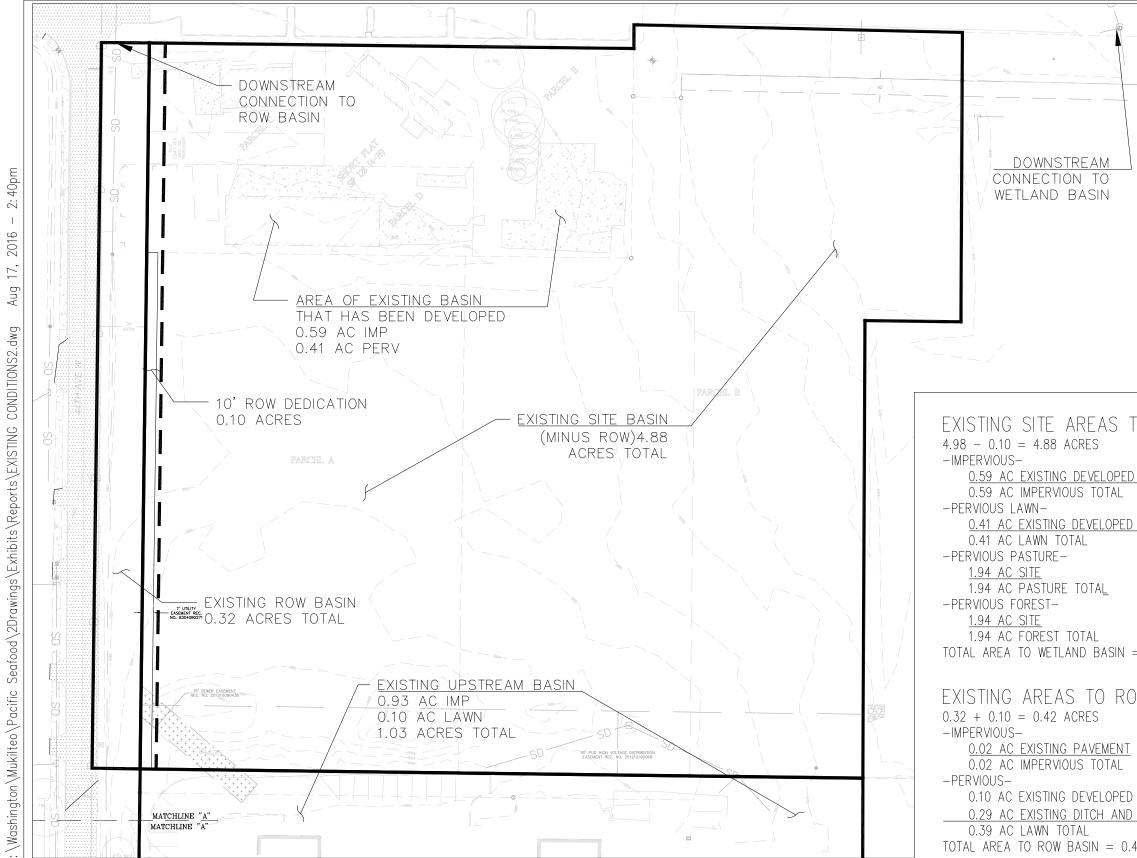
The sediment pond will have a 3.5' minimum depth from top of riser to bottom of live pond along with 1' of free board and 1.5' of sediment storage for a total depth of 6.0'.

SPECIAL REPORTS AND STUDIES OTHER PERMITS

Geotechnical Engineering Report by Redmond Geotechnical Services dated April 24th, 2015 is included in Appendix B. Also included is the pilot infiltration test results dated July 29th, 2016.

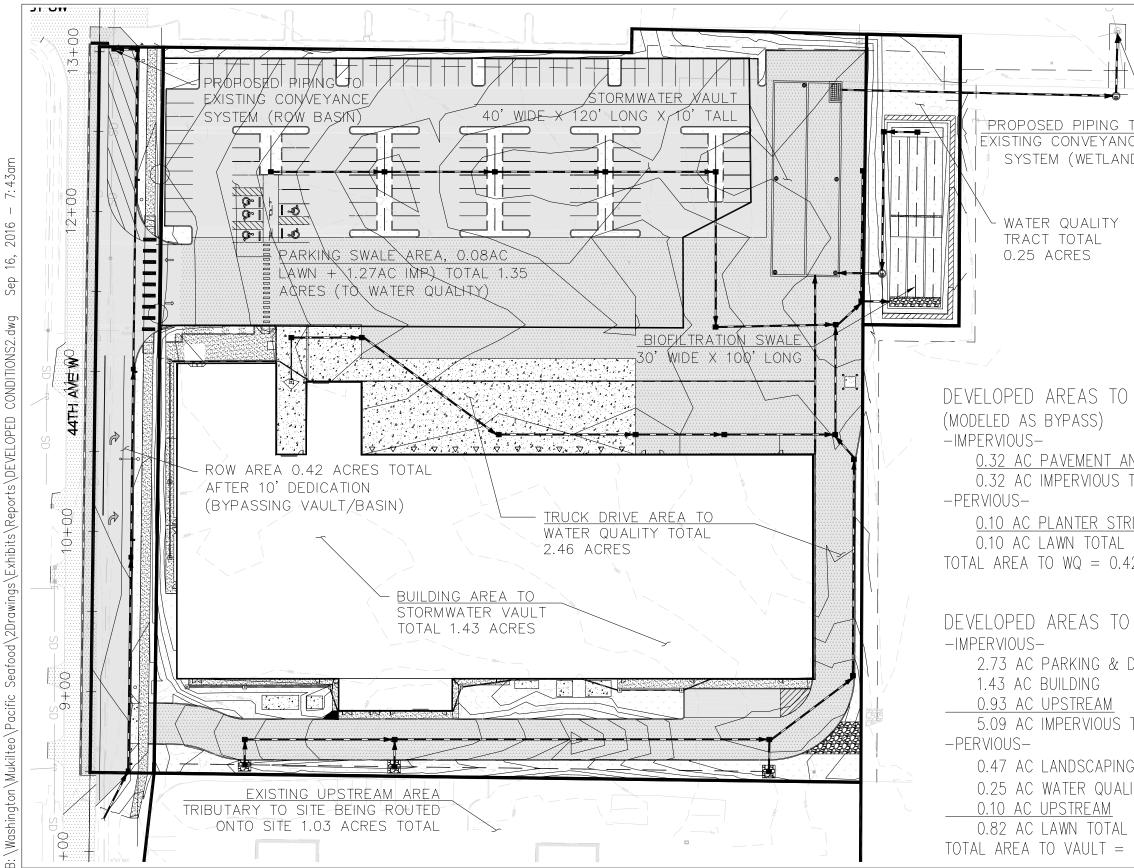
OTHER PERMITS

Dry utility and building permits will be applied for at a later date.


OPERATION AND MAINTENANCE

The owner or operator of the project shall be responsible for maintaining the stormwater facilities in accordance with local requirements. Proper maintenance is important for adequate functioning of the stormwater facilities. Operations and maintenance guidelines have been provided in Appendix E.

APPENDIX A


FIGURES

- Figure A Existing Conditions Exhibit
- Figure B Developed Conditions Exhibit
- Figure C Downstream Conditions Exhibit
- Figure D Drainage Plan, reduced sheet C-2.0
- Figure E Detention Vault Details, reduced sheet C-2.3

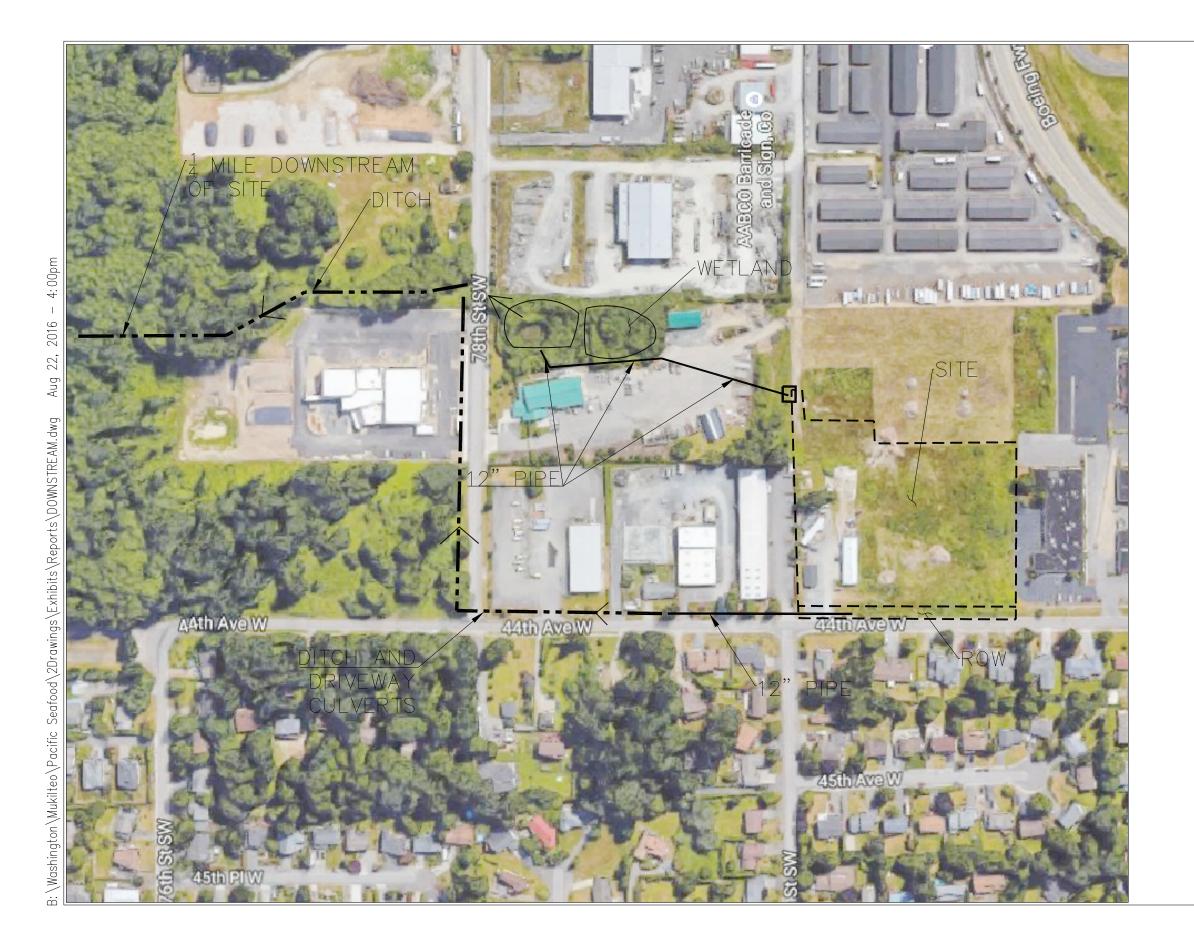
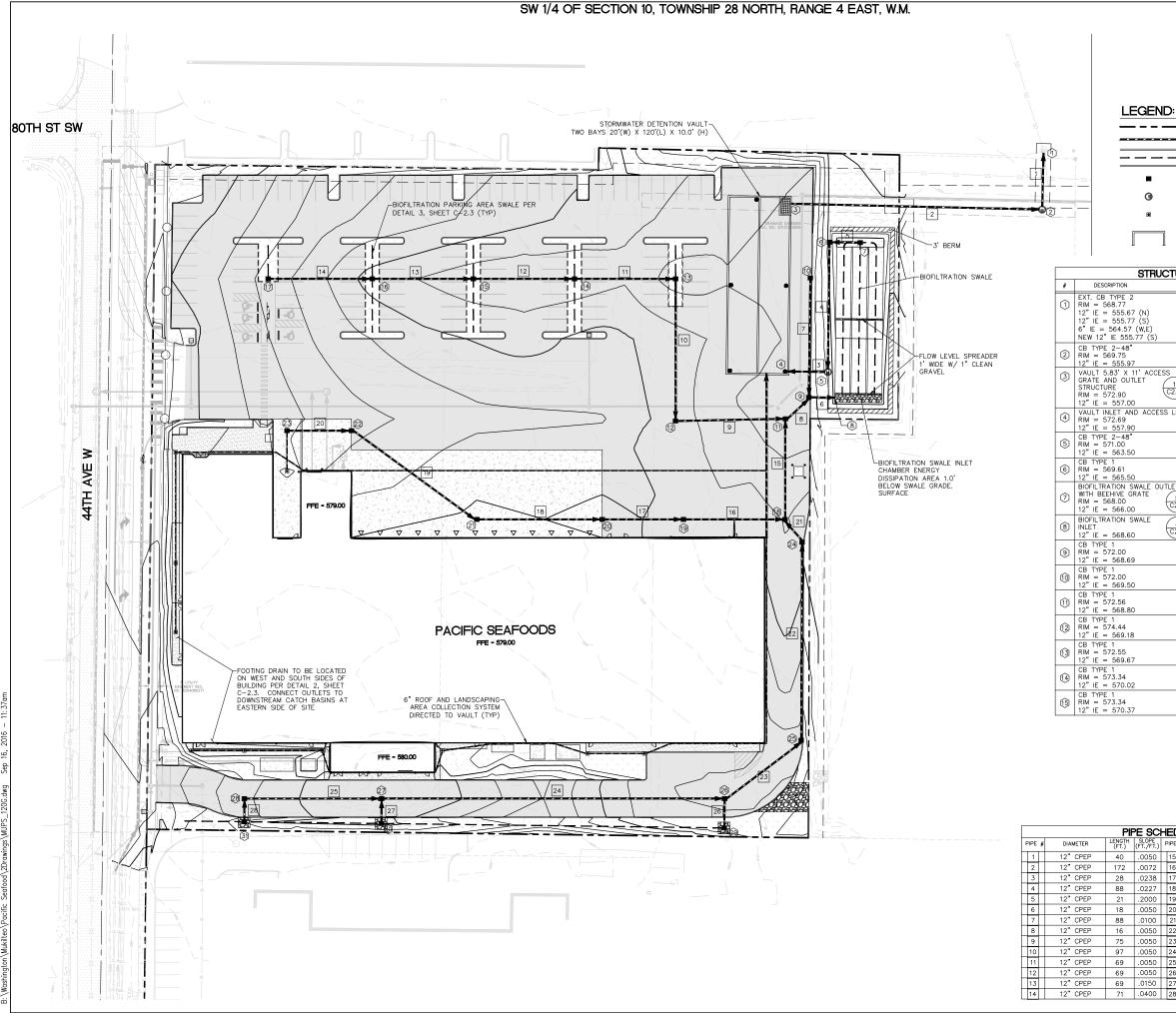

2016 17, Aug CONDITIONS2.dwg Seafood\2Drawings\Exhibits\Reports\EXISTING B: \Washington\Mukilteo\Pacific

	EXHIBIT A 8/17/2016 SCALE: 1" = 60'
TO WETLAND BASIN ED SITE AREA ED SITE AREA	PACIFIC SEAFOOD MUKILTEO DISTRIBUTION FACILITY EXISTING CONDITIONS
= 4.88 ACRES	23.9501 33.9501 19.com
OW BASIN	RITE CIVIL 51TE CIVIL 1 t t 425,453.9501 1 t 425,453.9208 www.navixeng.com
Τ	Ż Ţ
d site area <u>d shoulder (lawn)</u>	11400 s.e. 8th street suite 345 bellevue, wa 98004
0.42 ACRES	11400 sulte 345 bellevue,



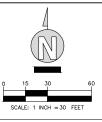
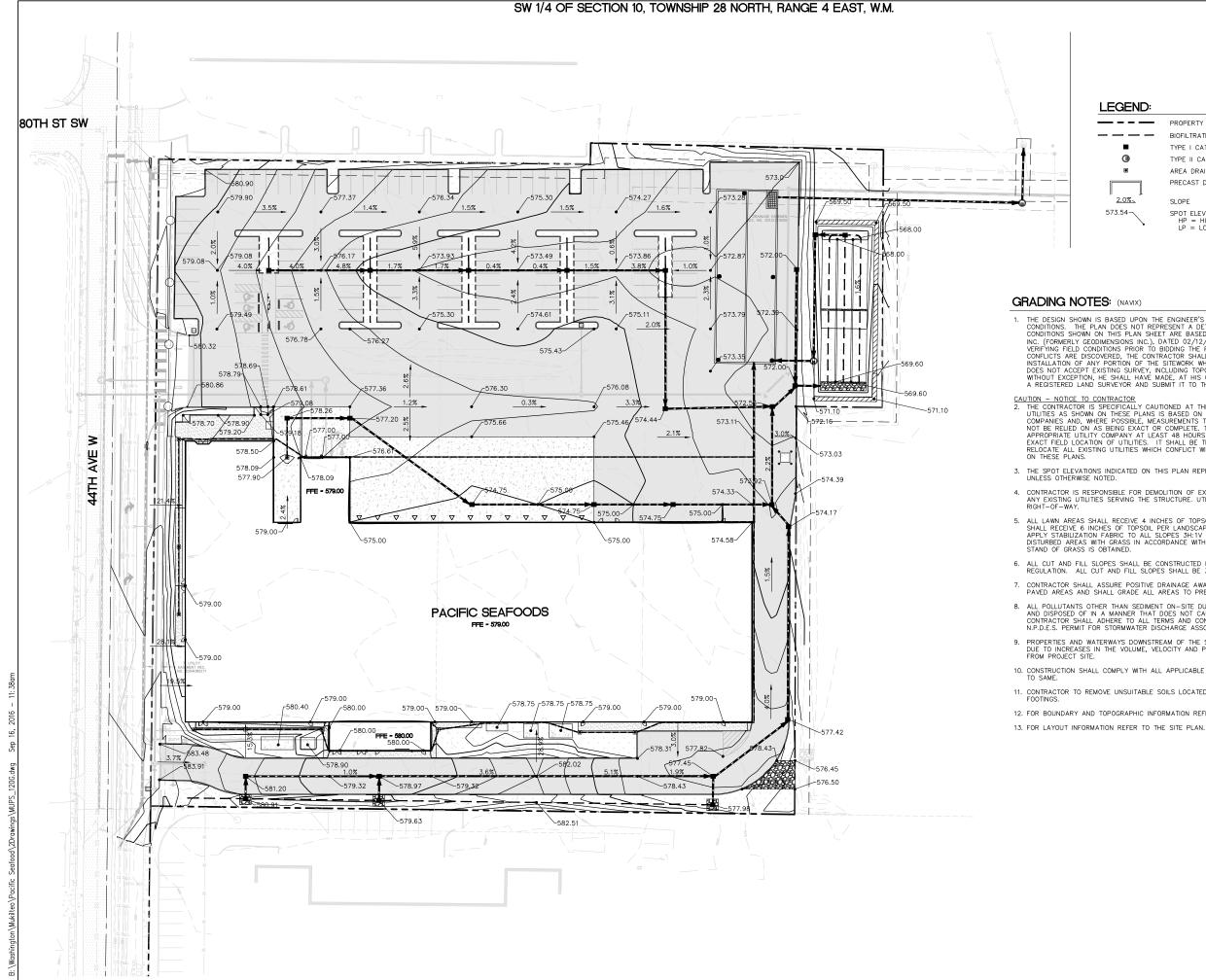
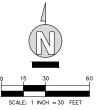

1 2016 16, Sep B: \Washington\Mukilteo\Pacific Seafood\2Drawings\Exhibits\Reports\DEVELOPED CONDITIONS2.dwg

	EXHIBIT B 9/16/2016 SCALE: 1" = 60'
ND) D ROW BASIN And sidewalk Total <u>RIP (Lawn)</u> 42 ACRES D DETENTION VAULT	PACIFIC SEAFOOD MUKILTEO DISTRIBUTION FACILITY DEVELOPED CONDITIONS
DRIVE AREAS TOTAL	SITE CIVIL t 425.453.9501 f: 425.453.8208 www.navixeng.com
IG AREAS (LAWN) LITY TRACT (LAWN)	
5.91 ACRES	11400 s.e. 8th street suite 345 bellevue, wa 98004

PACIFIC SEAFOOD		11400 s.e. 8th street t 225.453.9501 suite 345 t; 225.453.8208 bellevue, wa 98004 www.navixeno.com
AFOOD	TION FACILITY	CONDITIONS
EXHIBIT C	8/22/2016	SCALE: 1" = 200'

	PROPERTY BOUNDARY STORM PIPE
	BIOFILTRATION SWALE
-	TYPE I CATCH BASIN
0	
•	AREA DRAIN
	PRECAST DETENTION VAULT


STRUCTURE SCHEDULE


	301	
	#	DESCRIPTION
(N)	16	CB TYPE 1 RIM = 574.52 12" IE = 571.41
(S) W,E) 7 (S)	\bigcirc	CB TYPE 1 RIM = 577.63 12" IE = 574.25
	18	CB TYPE 1 RIM = 573.92 4" IE = 571.36 12" IE = 570.69
ACCESS	19	$\begin{array}{l} \text{CB} \text{TYPE 1} \\ \text{RIM} = 574.75 \\ 12^{\prime\prime} \text{ IE} = 571.04 \end{array}$
ACCESS LID	Ø	CB TYPE 1 RIM = 574.75 12" IE = 571.32
	21	CB TYPE 1 RIM = 574.75 12" IE = 571.75
	23	CB TYPE 1 RIM = 577.20 12" IE = 573.92
ALE OUTLET CB	Ø	CB TYPE 1 RIM = 578.26 6" IE = 575.30 12" IE = 574.80
ALE $\begin{pmatrix} 4 \\ C2.3 \end{pmatrix}$	24	CB TYPE 1 RIM = 574.17 12" IE = 571.17
	Ø	CB TYPE 1 RIM = 577.42 12" IE = 572.79
	26	CB TYPE 1 RIM = 577.45 12" IE = 573.12
	Ø	CB TYPE 1 RIM = 578.97 12" IE = 575.46
	28	CB TYPE 1 RIM = 581.20 12" IE = 576.40
	29	CB TYPE 1 RIM = 577.98 12" IE = 575.48
	30	CB TYPE 1 RIM = 579.63 12" IE = 575.63
	31	CB TYPE 1 RIM = 580.91 12" IE = 577.91

E SCI	HE	Dl	ILE		
SLOPE T./FT.)	PIP	E #	DIAMETER	LENGTH	SLOPE (FT./FT.)
0050	13	5	12" CPEP	69	.0274
0072	1	6	12" CPEP	69	.0050
0238	1	7	12" CPEP	55	.0050
0227	1	8	12" CPEP	85	.0050
2000	1	9	12" CPEP	105	.0207
0050	2	0	12" CPEP	44	.0200
0100	2	1	12" CPEP	20	.0240
0050	2	2	12" CPEP	135	.0120
0050	2	3	12" CPEP	65	.0051
0050	2	4	12" CPEP	232	.0100
0050	2	5	12" CPEP	92	.0102
0050	2	6	12" CPEP	20	.1180
0150	2	7	12" CPEP	17	.0100
0400	2	8	12" CPEP	16	.0944
		_			

Know what's below. Call before you dig.

LEGEND:

PROPERTY BOUNDARY
BIOFILTRATION SWALE
TYPE I CATCH BASIN
TYPE II CATCH BASIN
AREA DRAIN
PRECAST DETENTION VAULT
SLOPE
SPOT ELEVATION: HP = HIGH POINT LP = LOW POINT

THE DESIGN SHOWN IS BASED UPON THE ENGINEER'S UNDERSTANDING OF THE EXISTING CONDITIONS. THE PLAN DOES NOT REPRESENT A DETAILED FIELD SURVEY. THE EXISTING CONDITIONS SHOWN ON THIS PLAN SHEET ARE BASED UPON THE SURVEY PREPARED BY TERRANE, INC. (FORMERLY GEODIMENSIONS INC.), DATED 02/12/16. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING FIELD CONDITIONS PRIOR TO BIDDING THE PROPOSED SITEWORK IMPROVEMENTS. IF CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTEY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITEWORK WHICH WOULD BE AFFECTED. IF CONTRACTOR DOES NOT ACCEPT EXISTING SURVEY, INCLUDING TOPOGRAPHY AS SHOWN ON THE PLANS, WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS OWN EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER FOR REVIEW.

CAUTION - NOTICE TO CONTRACTOR 2. THE CONTRACTOR IS SPECIFICALLY CAUTIONED AT THE LOCATION AND/OR ELEVATION OF EXISTING UITITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UITLITY COMPANIES AND, WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROFRIATE UITLITY COMPANY AT LEAST 48 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THESE PLANS.

THE SPOT ELEVATIONS INDICATED ON THIS PLAN REPRESENT THE DESIGN TOP OF PAVEMENT, UNLESS OTHERWISE NOTED.

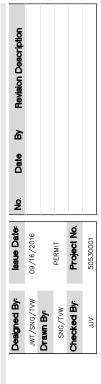
4. CONTRACTOR IS RESPONSIBLE FOR DEMOLITION OF EXISTING STRUCTURES INCLUDING REMOVAL OF ANY EXISTING UTILITIES SERVING THE STRUCTURE. UTILITIES ARE TO BE REMOVED TO THE

5. ALL LAWN AREAS SHALL RECEIVE 4 INCHES OF TOPSOIL AND ALL OTHER LANDSCAPED AREAS SHALL RECEIVE 6 INCHES OF TOPSOIL PER LANDSCAPING SPECIFICATIONS. CONTRACTOR SHALL APPLY STABILIZATION FABRIC TO ALL SLOPES 3H: IV OR STEEPER. CONTRACTOR SHALL STABILIZE DISTURBED AREAS WITH GRASS IN ACCORDANCE WITH LOCAL SPECIFICATION UNTIL A HEALTHY STAND OF GRASS IS OBTAINED.

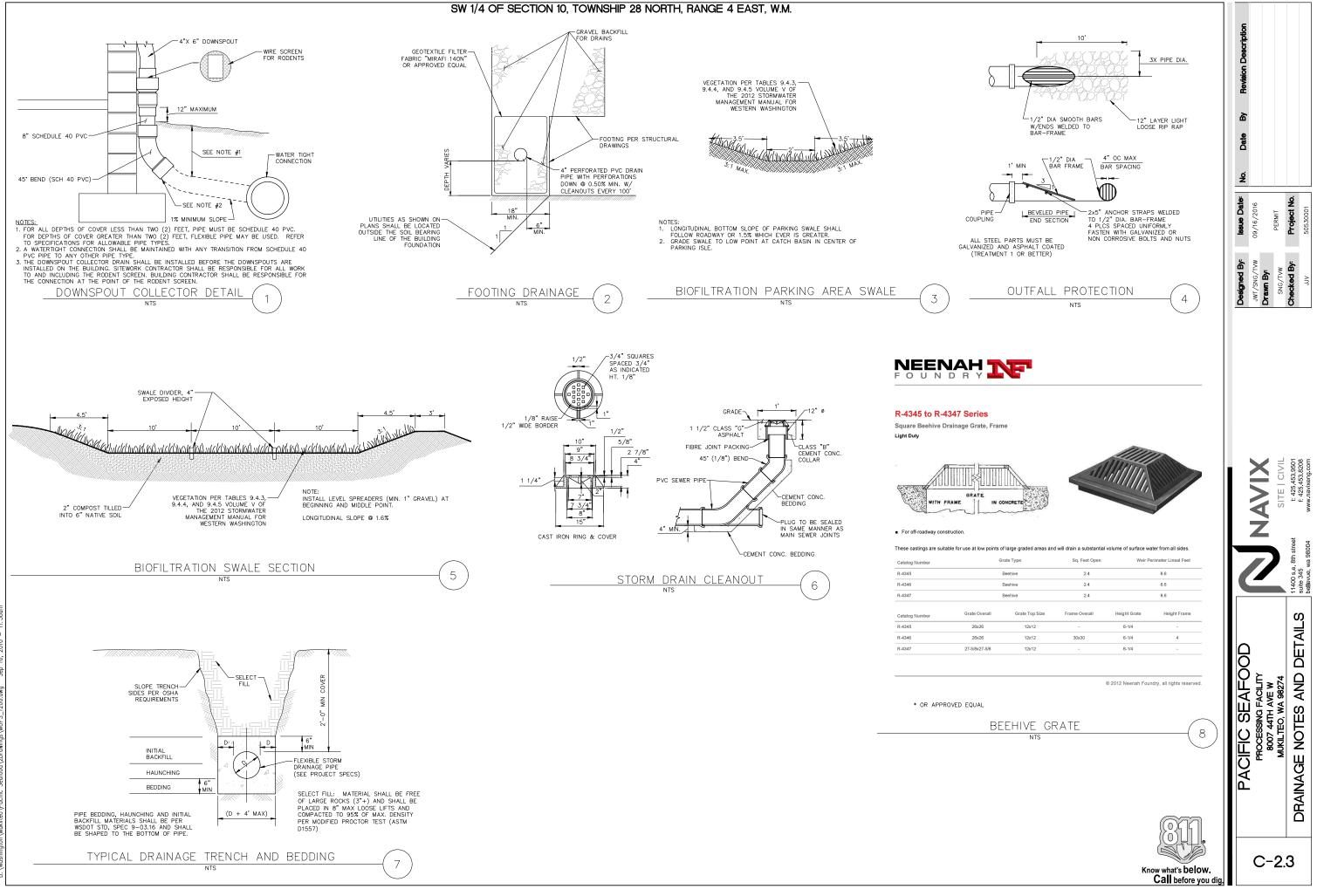
ALL CUT AND FILL SLOPES SHALL BE CONSTRUCTED PER THE UBC CODE AND APPLICABLE LOCAL REGULATION. ALL CUT AND FILL SLOPES SHALL BE 3:1 OR FLATTER UNLESS OTHERWISE NOTED.

7. CONTRACTOR SHALL ASSURE POSITIVE DRAINAGE AWAY FROM BUILDINGS FOR ALL NATURAL AND PAVED AREAS AND SHALL GRADE ALL AREAS TO PRECLUDE PONDING OF WATER.

ALL POLLUTANTS OTHER THAN SEDIMENT ON-SITE DURING CONSTRUCTION SHALL BE HANDLED AND DISPOSED OF IN A MANNER THAT DOES NOT CAUSE CONTAMINATION OF STORWATER. THE CONTRACTOR SHALL ADHERE TO ALL TERMS AND CONDITIONS AS OUTLINED IN THE GENERAL N.P.D.E.S. PERMIT FOR STORWWATER DISCHARGE ASSOCIATED WITH CONSTRUCTION ACTIVITES.


9. PROPERTIES AND WATERWAYS DOWNSTREAM OF THE SITE SHALL BE PROTECTED FROM EROSION DUE TO INCREASES IN THE VOLUME, VELOCITY AND PEAK FLOW RATE OF STORMWATER RUNOFF

10. CONSTRUCTION SHALL COMPLY WITH ALL APPLICABLE GOVERNING CODES AND BE CONSTRUCTED


11. CONTRACTOR TO REMOVE UNSUITABLE SOILS LOCATED WITHIN THE BUILDINGS SPLAY LINE OF THE FOOTINGS.

12. FOR BOUNDARY AND TOPOGRAPHIC INFORMATION REFER TO PROJECT SURVEY.

ichination/Multillan/Docific Sentend/20cruinen/MIDS 1200 dum - Sen 16 2016 - 11:36

STORM DRAINAGE NOTES: (NAVIX)

- 1. THE DESIGN SHOWN IS BASED UPON THE ENGINEER'S UNDERSTANDING OF THE EXISTING CONDITIONS. THE PLAN DOES NOT REPRESENT A DETAILED FIELD SURVEY. THE EXISTING CONDITIONS SHOWN ON THIS PLAN SHEET ARE BASED UPON THE SURVEY PREPARED BY TERRANE, INC. (FORMERLY GEODIMENSIONS INC.), DATED 02/12/16. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING FIELD CONDITIONS PRIOR TO BIDDING THE PROPOSED SITEWORK IMPROVEMENTS. IF CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTHEY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITEWORK WHICH WOULD BE AFFECTED. IF CONTRACTOR DOES NOT ACCEPT EXISTING SURVEY, INCLUDING TOPOGRAPHY AS SHOWN ON THE PLANS, WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS OWN EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER FOR REVIEW.
- 2. <u>CAUTION NOTICE TO CONTRACTOR</u> THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES AND, WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANY AT LEAST 48 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELICATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THESE PLANS.
- 3. ALL WORKMANSHIP AND MATERIALS SHALL CONFORM TO THE MOST CURRENT APPLICABLE LOCAL, STATE, AND FEDERAL STANDARDS.
- 4. EXISTING DRAINAGE STRUCTURES TO BE INSPECTED AND REPAIRED AS NEEDED, AND EXISTING PIPES TO BE CLEANED OUT TO REMOVE ALL SILT AND DEBRIS.
- IF ANY EXISTING STRUCTURES TO REMAIN ARE DAMAGED DURING CONSTRUCTION IT SHALL BE THE CONTRACTORS RESPONSIBILITY TO REPAIR AND/OR REPLACE THE EXISTING STRUCTURE AS NECESSARY TO RETURN IT TO EXISTING CONDITIONS OR BETTER.
- 6. STORM DRAINAGE PIPE WITH LESS THAN 2'-0" COVER SHALL BE CLASS IV REINFORCED CONCRETE PIPE, OR APPROVED EQUAL TO SUSTAIN H-20 LOADING.
- 7. ALL ONSITE STORM DRAINAGE PIPE SHALL BE SMOOTH WALLED INTERIOR, MANUFACTURER'S VERIFICATION OF MANNING'S ROUGHNESS COEFFICIENT N=0.012 OR LESS.
- 8. PRECAST STRUCTURES MAY BE USED AT CONTRACTOR'S OPTION.
- ALL CATCH BASINS AND AREA DRAINS ARE TO BE SITUATED SUCH THAT THE OUTSIDE EDGE OF GRATE FRAME IS AT TOE OF CURB OR FLOW LINE OF GUTTER (WHERE APPLICABLE).
- 10. CATCH BASIN INLET PROTECTION / EROSION CONTROL TO BE USED FOR ALL NEW INLETS.
- 11. ALL STORM PIPE ENTERING STRUCTURES SHALL BE GROUTED TO ASSURE CONNECTION AT STRUCTURE IS WATERTIGHT.
- 12. ALL STORM SEWER MANHOLES IN PAVED AREAS SHALL BE FLUSH WITH PAVEMENT, AND SHALL HAVE TRAFFIC BEARING RING AND COVERS. MANHOLES IN UNPAVED AREAS SHALL BE 6" ABOVE FINISH GRADE. LIDS SHALL BE LABELED "STORM SEWER".
- 11. ALL STORM STRUCTURES SHALL HAVE A SMOOTH UNIFORM POURED MORTAR INVERT FROM INVERT IN TO INVERT OUT, UNLESS OTHERWISE SHOWN IN THE CATCH BASIN DETAIL.
- 12. CONTRACTOR SHALL CONNECT ROOF DRAIN LEADERS TO PROPOSED STORM DRAINS AS SHOWN.

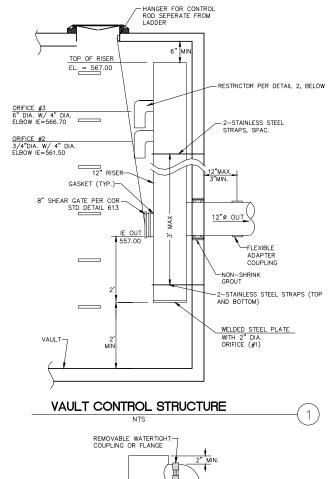


PLATE WELDED TO ELBOW WITH ORIFICE AS SPECIFIED

NTS

2

Know what's below. Call before you dig.	ET.							
	PACIFIC SEAFOOD		Designed By:	Issue Date:	Ö	Date B)	By Re	Revision Description
C			WT/SNG/TWU	09/16/2016				
)	8007 44TH AVE W		Drawn By:					
2.	MUKILTEO, WA 98274	SITE CIVIL	SNG/TVW	PERMIT				
4	DDAINACE NOTES AND DETAILS	11400 s.e. 8th street t: 425.453.9501	Checked By:	Project No.				
		8	٨٢٢	50530001				

APPENDIX B

GEOTECHNICAL ENGINEERING INVESTIGATION REPORTS

Report 1 – Geotechnical Investigation Services – April 24, 2015 Report 2 – Infiltration Rate Letter – July 29, 2016

April 24, 2015

Mr. Dave Franklin FFE Architecture and Engineering, Inc. 201 East Lincoln Avenue, Suite 200 Yakima, Washington 98901

Dear Mr. Franklin:

Re: Geotechnical Investigation Services, Proposed Pacific Seafood Greenfield Processing/Distribution Facility Site, 8007 44th Avenue West, Mukilteo (Snohomish County), Washington

Submitted herewith is our report entitled "Geotechnical Investigation Services, Proposed Pacific Seafood Greenfield Processing/Distribution Facility Site, 8007 44th Avenue West, Mukilteo (Snohomish County), Washington". The scope of our services was outlined in our formal proposal to Mr. Bill Marczewski of C.D. Pacific Seafood Group dated February 17, 2015. Written authorization of our services was provided by Mr. Bill Marczewski of Pacific Seafood Group on March 5, 2015.

During the course of our investigation, we have kept you and/or others advised of our schedule and preliminary findings. We appreciate the opportunity to assist you with this phase of the project. Should you have any questions regarding this report, please do not hesitate to call.

Sincerely,

Daniel M. Redmond, P.E., G.E. President/Principal Engineer

cc: Mr. Bill Marczewski, P.E. Pacific Seafood Group

TABLE OF CONTENTS

INTRODUCTION	1
PROJECT DESCRIPTION	1
SCOPE OF WORK	2
SITE CONDITIONS	3
Site Geology	3
Surface Conditions	3
Subsurface Soil Conditions	4
Groundwater	5
LABORATORY TESTING	5
SEISMICITY AND EARTHQUAKE SOURCES	5
Liquefaction	6
Landslides	7
Surface Rupture	7
Tsunami and Seiche	7
Flooding and Erosion	7
CONCLUSIONS AND RECOMMENDATIONS	8
General	8
Site Preparation	9
Foundation Support	10
Shallow Foundations	11
Floor Slab Support	11
Retaining/Below Grade Walls	12

Table of Contents (continued)

Pavements	13
Automobile/Truck Parking and Drive Areas	13
Pavement Subgrade, Base Course and Asphalt Materials	13
Excavations/Slopes	14
Surface Drainage/Ground Water	14
Seismic Design Considerations	15
CONSTRUCTION MONITORING AND TESTING	16
CLOSURE AND LIMITATIONS	16
LEVEL OF CARE	17
REFERENCES	18
ATTACHMENTS	

Figure No. 1 - Site Vicinity Map Figure No. 2 - Site Exploration Plan Figure No. 3 - Perimeter Footing/Retaining Wall Drain Detail

APPENDIX

Boring Logs and Laboratory Test Data

Project No. 1390.001.G Page No. 1

GEOTECHNICAL INVESTIGATION SERVICES PROPOSED PACIFIC SEAFOOD GREENFIELD PROCESSING/DISTRIBUTION FACILITY SITE 8007 44TH AVENUE WEST MUKILTEO (SNOHOMISH COUNTY), WASHINGTON

INTRODUCTION

Redmond Geotechnical Services, LLC is please to submit to you the results of our Geotechnical Investigation at the site of the proposed Pacific Seafood Greenfield Processing/Distribution Facility located to the southeast of the intersection of 44th Avenue West and 80th Street SW in Mukilteo (Snohomish County), Washington. The general location of the subject site is shown on the Site Vicinity Map, Figure No. 1. The purpose of our geotechnical investigation services at this time was to explore the existing subsurface soils and/or groundwater conditions across the subject site and to develop and/or provide appropriate geotechnical design and construction recommendations for the proposed new processing and/or distribution facility project.

PROJECT DESCRIPTION

Based on a review of the proposed site development plan, we understand that present plans for the project will consist of the construction of one (1) new processing and/or distribution facility building. Although the processing and/or distribution facility project is still in the final planning and design stage, we understand that the project will result in the construction of an approximate 63,777 square feet concrete tilt-up structure with steel framing which will house multi-temperature rooms ranging from +32 degrees F storage rooms to a -10 degrees F freezer room as well as other warehouse dry storage, office and employee areas. Additionally, we understand that the new processing and distribution building will be designed to have a common finish floor elevation which will be a dock high facility that will allow for Over the Road (OTR) trucks and trailers to back against the Cool loading dock. Further, we understand that the processing and distribution building height will be approximately 35 feet at the roof peak with an additional 10 feet for mechanical equipment.

Support of the new processing and distribution facility structure is anticipated to include both conventional shallow individual (column) footings and strip (continuous) footings. Structural loading information, although unavailable at this time, is anticipated to be fairly typical for this type of concrete tilt-up and/or warehouse structure and is expected to result in maximum dead plus live continuous (strip) and individual (column) footing loads on the order of about 5.0 to 6.0 kips per lineal foot (klf) and 100 to 120 kips, respectively.

Project No. 1390.001.G Page No. 2

Earthwork and grading operations associated with bringing the subject property to finish design grades are unknown at this time. However, based on the existing sloping site grades, we anticipated that some cuts and/or fills on the order of approximately two (2) to four (4) feet will likely be required in order to lower the higher westerly portion of the site and raise the lower easterly portion of the site.

Other associated site improvements for the project will include new underground utility services, concrete curbs and sidewalks, and landscaping as well as new paved (concrete and/or asphalt) parking and drive areas for automobiles as well as both 18 kip single axle and 34 kip tandem axle trucks and trailers.

SCOPE OF WORK

The purpose of our geotechnical studies was to evaluate the overall site subsurface soil and/or groundwater conditions underlying the site with regard to the proposed new processing and distribution facility construction at the site and any associated impacts or concerns with respect to the processing and distribution center as well as provide appropriate geotechnical design and construction recommendations for the project. Specifically, our geotechnical investigation included the following scope of work items:

- 1. A detailed field reconnaissance and subsurface exploration program of the soil and ground water conditions underlying the site by means of seventeen (17) exploratory test borings. The exploratory test borings were drilled to depths ranging from about five (9) to fifteen (15) feet beneath existing site grades with track mounted auger drilling equipment at the approximate locations as shown on the Site Exploration Map, Figure No. 2. Additionally, representative samples of the subsurface soils encountered at the site were collected and returned to our laboratory for further examination and testing.
- 2. Laboratory testing to evaluate and identify pertinent physical and engineering properties of the subsurface soils encountered relative to the planned site development and construction at the site. The laboratory testing program included tests to help evaluate the natural (field) moisture content and dry density, maximum dry density and optimum moisture content, gradational characteristics, and Atterberg Limits as well as direct shear strength, consolidation and "R"-value testing.
- 3. A literature review and engineering evaluation and assessment of the regional seismicity to evaluate the potential ground motion hazard(s) at the subject site. The evaluation and assessment included a review of the regional earthquake history and sources such as potential seismic sources, maximum credible earthquakes, and reoccurrence intervals as well as a discussion of the possible ground response to the selected design earthquake(s), fault rupture, landsliding, liquefaction, and tsunami and seiche flooding.

- 4. Engineering analyses utilizing the field and laboratory data as a basis for furnishing recommendations for foundation support of the proposed new processing and distribution facility structure. Recommendations include maximum design allowable contact bearing pressure(s), depth of footing embedment, estimates of foundation settlement, lateral soil resistance, and foundation subgrade preparation. Additionally, construction and/or permanent subsurface water drainage considerations have also been prepared. Further, our report includes recommendations regarding site preparation, placement and compaction of structural fill materials, suitability of the on-site soils for use as structural fill, criteria for import fill materials, and preparation of foundation, pavement and/or floor slab subgrades.
- 5. Development of various flexible and rigid pavement design sections for both automobile and heavy truck access drive and parking areas.

SITE CONDITIONS

Site Geology

Much of the Puget Sound region was affected by past intrusion of continental glaciation. The last period of glaciation, the Vashon Stade, ended approximately 10,000 to 11,000 years ago. Many of the geomorphic features seen today are a result of scouring and overriding by glacial ice. During the Vashon Stade, the Puget Sound region was overridden by over 3,000 feet of ice. Soil layers overridden by the ice sheet were compacted to a much greater extent than those that were not. A typical sequence includes recessional outwash sand, overlying glacial till or drift, underlain by advance outwash.

Available geologic mapping of the area and/or subject site as shown on the Distribution and Description of Geologic Units in the Mukilteo Quadrangle, Washington by James P. Minard (1982) indicates that the near surface soils consist of glacial till (Qvt). The glacial till unit is described as a non-sorted mixture of clay, silt, sandy, pebbles, and cobbles.

Surface Conditions

The subject property is generally irregular in shape and encompassing a total area of approximately 5.07 acres. The subject property is roughly bounded to the west 44th Avenue West and to the north, south and east by existing and/or developed commercial and/or industrial properties.

The northwesterly portion of the subject site is presently improved which includes two (2) existing commercial and/or shop structures and a mobile home structure as well as paved and/or graveled vehicle parking. Additionally, the northwesterly portion of the site contains an existing concrete slab believed to be associated with a prior structure. Further, the remainder of the easterly and southerly portions of the site are presently unimproved.

Surface vegetation across the unimproved portion of the site generally consists of a moderate growth of grass and weeds as well as some brush while the area around the existing structures also contains some trees.

Topographically, the site is characterized as gently sloping terrain (5 to 10 percent) descending downward towards the northeast with overall topographic relief estimated at about fourteen (14) feet and is estimated to lie between a low of about Elevation 570 feet near the northeasterly corner of the site to a high of about Elevation 586 feet near the southwesterly portion of the site. However, the southwesterly portion of the site has been elevated above its natural site grades with stockpiles which lie at about Elevation 590 feet.

Subsurface Soil Conditions

Our understanding of the subsurface soil conditions underlying the site was developed by means of seventeen (17) exploratory test borings drilled to depths ranging from about five (5) to fifteen (15) feet beneath existing site grades on April 10, 2015 with track mounted auger drilling equipment. The location of the exploratory test borings were located in the field by marking off distances from existing and/or known site features and are shown in relation to the existing and/or proposed site improvements on the Site Exploration Map, Figure No. 2. Detailed logs of the test boring explorations, presenting conditions encountered at each location explored, are presented in the Appendix, Figure No's. A-5 through A-21.

The exploratory test boring excavations performed during this study were observed by staff from Redmond Geotechnical Services, LLC who logged each of the test boring explorations and obtained representative samples of the subsurface soils encountered across the site. Additionally, the elevation of the exploratory test boring excavations were referenced from a Boundary & Topographic Survey prepared by GeoDimensions dated March 24, 2015 and should be considered as approximate. All subsurface soils encountered at the site and/or within the exploratory test boring excavations were logged and classified in general conformance with the Unified Soil Classification System (USCS) which is outlined on Figure No. A-4.

The test boring explorations revealed that the subject site is generally underlain by native soil deposits comprised of glacial drift and/or till deposits of Pleistocene age. However, localized fill soils were also encountered at the site. Specifically, the subsurface soils underlying the project area generally consists of a surficial layer of topsoil materials comprised of about 8 to 18 inches of dark brown, very moist to saturated, very soft to soft, organic to highly organic, sandy, clayey silt. These surficial topsoil materials were inturn underlain by native residual soils composed of an upper layer of medium to orangish-brown, very moist to saturated, loose to medium dense, clayey, silty sand with occasional gravel and roots subgrade soils to depths ranging from about 2 to 3 feet beneath the existing site and/or surface grades. This upper layer of residual soils is considered to be highly weathered glacial drift and is best characterized by relatively low strength and moderately to high compressibility. This upper layer of glacial drift was inturn underlain by gray to gray-brown, very moist, medium dense to dense, clayey, silty sand with gravel and cobbles to the maximum depth explored of about fifteen (15) feet beneath existing site and/or surface grades.

This underlying unit represents the glacial till bedrock deposits and are best characterized by relatively high strength and low compressibility. However, areas of fill soil and/or surface improvements were also found to be present at the site. Specifically, the northwesterly portion of the site contains various gravel base rock and concrete pavements/slabs of approximately 6 inches in depth and/or thickness. Additionally, the central, southerly and easterly portions of the site contain a 6 to 24 inch layer of bark chips. Further, the southwesterly portion of the site contains two (2) large spoil piles which contain approximately 6 to 8 feet of uncompacted silty sand soils. In addition to the above, other evidence of fill placement was observed at the site and to the east of the existing site improvements and/or concrete slab which was observed to consist of a mixture of soil with miscellaneous wood and construction debris.

Groundwater

Groundwater was generally not encountered within any of the exploratory test boring explorations (B-#1 through B-#17) at the time of drilling to depths of at least fifteen (15) feet beneath existing site grades. However, several of the test borings drilled across the central and/or easterly portion of the site encountered seepage. Based on a review of available water wells in the area, the apparent depth to seasonal high groundwater in the area of the subject site is greater than 20 feet. However, groundwater elevations at and/or below the subject site may fluctuate seasonally in accordance with rainfall conditions as well as changes in site utilization. Additionally, due to the presence of relatively low permeability within the underlying medium dense to dense, clayey, silty sand with gravel and cobble glacial till bedrock deposits, surface water was observed to be perch near to and/or at the ground surface at the time of our field work and/or during periods of peak and/or prolonged rainfall.

LABORATORY TESTING

Representative samples of the on-site subsurface soils were collected at selected depths and intervals from various test boring explorations and returned to our laboratory for further examination and testing and/or to aid in the classification of the subsurface soils as well as to help evaluate and identify their engineering strength and compressibility characteristics. The laboratory testing consisted of visual and textural sample inspection, moisture content and dry density determinations, maximum dry density and optimum moisture content, gradation analyses and Atterberg Limits as well as direct shear strength, consolidation and "R"-value tests. Results of the various laboratory tests are presented in the Appendix, Figure No's. A-22 through A-29.

SEISMICITY AND EARTHQUAKE SOURCES

The seismicity of the northwest Washington as well as the Seattle and/or Everett areas, and hence the potential for ground shaking, is controlled by three separate fault mechanisms. These include the Cascadia Subduction Zone (CSZ), the mid-depth intraplate zone, and the relatively shallow crustal zone. Descriptions of these potential earthquake sources are presented below.

The CSZ is located offshore and extends from northern California to British Columbia. Within this zone, the oceanic Juan de Fuca Plate is being subducted beneath the continental North American Plate to the east. The interface between these two plates is located at a depth of approximately 15 to 20 kilometers (km). The seismicity of the CSZ is subject to several uncertainties, including the maximum earthquake magnitude and the recurrence intervals associated with various magnitude earthquakes. Anecdotal evidence of previous CSZ earthquakes has been observed within coastal marshes along the Washington and Oregon coastlines. Sequences of interlayered peat and sands have been interpreted to be the result of large Subduction zone earthquakes occurring at intervals on the order of 300 to 500 years, with the most recent event taking place approximately 300 years ago. A recent study by Geomatrix (1995) suggests that the maximum earthquake associated with the CSZ is moment magnitude (Mw) 8 to 9. This is based on an empirical expression relating moment magnitude to the area of fault rupture derived from earthquakes that have occurred within Subduction zones in other parts of the world. An Mw 9 earthquake would involve a rupture of the entire CSZ. As discussed by Geomatrix (1995) this has not occurred in other subduction zones that have exhibited much higher levels of historical seismicity than the CSZ, and is considered unlikely. For the purpose of this study an earthquake of Mw 8.5 was assumed to occur within the CSZ.

The intraplate zone encompasses the portion of the subducting Juan de Fuca Plate located at a depth of approximately 30 to 50 km below western Washington and western Oregon. Very low levels of seismicity have been observed within the intraplate zone in western Oregon and western Washington. However, much higher levels of seismicity within this zone have been recorded in Washington and California. Several reasons for this seismic quiescence were suggested in the Geomatrix (1995) study and include changes in the direction of Subduction between Oregon, Washington, and British Columbia as well as the effects of volcanic activity along the Cascade Range. Historical activity associated with the intraplate zone includes the 1949 Olympia magnitude 7.1 and the 1965 Puget Sound magnitude 6.5 earthquakes. Based on the data presented within the Geomatrix (1995) report, an earthquake of magnitude 7.25 has been chosen to represent the seismic potential of the intraplate zone.

The third source of seismicity that can result in ground shaking within the Seattle/Everett and northwest Washington area is near-surface crustal earthquakes occurring within the North American Plate. The historical seismicity of crustal earthquakes in this area is higher than the seismicity associated with the CSZ and the intraplate zone.

Liquefaction

Seismic induced soil liquefaction is a phenomenon in which lose, granular soils and some silty soils, located below the water table, develop high pore water pressures and lose strength due to ground vibrations induced by earthquakes. Soil liquefaction can result in lateral flow of material into river channels, ground settlements and increased lateral and uplift pressures on underground structures. Buildings supported on soils that have liquefied often settle and tilt and may displace laterally. Soils located above the ground water table cannot liquefy, but granular soils located above the water table may settle during the earthquake shaking.

Project No. 1288.001.G Page No. 7

Our review of the subsurface soil test boring logs from our exploratory field explorations (B-#1 through B-#17) and laboratory test results indicates that the site is generally underlain by medium dense to dense, clayey, silty sand glacial till deposits to depths of at least 15.0 feet beneath existing site grades.

As such, due to the medium dense to dense characteristics of the underlying clayey, silty sand glacial till bedrock deposits beneath the site, it is our opinion that the soil deposits located beneath the subject site do not have the potential for liquefaction during the design earthquake motions previously described. A more detailed liquefaction assessment was not part of the scope of work for this Geotechnical Investigation.

Landslides

No ancient and/or active landslides were observed or are known to be present on the subject site. Additionally, due to the relatively flat-lying to gently sloping nature of the subject site, the risk of seismic induced slope instability at the site resulting in landslides and/or lateral earth movements does not appear to present a potential geologic hazard.

Surface Rupture

Although the site is generally located within a region of the country known for seismic activity, no known faults exist on and/or immediately adjacent to the subject site. As such, the risk of surface rupture due to faulting is considered negligible.

Tsunami and Seiche

A tsunami, or seismic sea wave, is produced when a major fault under the ocean floor moves vertically and shifts the water column above it. A seiche is a periodic oscillation of a body of water resulting in changing water levels, sometimes caused by an earthquake. Tsunami and seiche are not considered a potential hazard at this site because the site is not near to the coast and/or there are no adjacent significant bodies of water.

Flooding and Erosion

Stream flooding is a potential hazard that should be considered in lowland areas of Snohomish County and Mukilteo. The FEMA (Federal Emergency Management Agency) flood maps should be reviewed as part of the design for the proposed new auto dealership structure and any associated site improvements. Elevations of structures on the site should be designed based upon consultants reports, FEMA (Federal Emergency Management Agency), and Snohomish County requirements for the 100-year flood levels of any nearby creeks and/or streams.

CONCLUSIONS AND RECOMMENDATIONS

<u>General</u>

Based on the results of our field explorations, laboratory testing, and engineering analyses, it is our opinion that the site is suitable for the proposed new Pacific Seafood Greenfield Processing and Distribution facility and its associated site improvements provided that the recommendations contained within this report are properly incorporated into the design and construction of the project.

The primary features of concern at the site are 1) the presence of the existing site and/or surface improvements across the northwesterly portion of the site, 2) the presence of existing fill materials at the site, 3) the presence of the extensive layer of topsoil materials across the site, 4) the presence of the upper layer of medium to orangish-brown, loose, clayey, silty sand subgrade soils, 5) the presence of perched and/or surface water, and 6) the relatively dense glacial till bedrock deposits beneath the site.

In regards to the presence of the existing site and/or surface improvements within the northwesterly portion of the site, we are generally of the opinion that carefully monitoring of the site grading and earthwork activities will be required by the Geotechnical Engineer to ensure that all of the old foundation remnants, surface improvements and/or old utility services are properly removed and/or abandoned prior to the placement of any new structural fills and/or site improvements.

With regard to the presence of existing fill materials at the site, we are of the opinion that the fill materials are likely undocumented. Additionally, much of the surficial fill consists of bark chips. Further, the fill materials appear to be poorly compacted and are generally unsuitable for support of the proposed new site improvements. As such, we are generally of the opinion that all of the existing fill soil materials be removed in their entirety down to an approved native subgrade. Additionally, if during the upcoming site grading and earthwork operations it is determined that the existing fill materials contain deleterious materials and/or significant organics, the existing fill materials would be considered unsuitable for use/reuse as structural fill and/or support of the planned new site improvements. However, existing fill materials which are generally free of organics and/or deleterious materials, such as the large stockpiles located in the southwesterly portion of the site, may be used/re-used as structural fill if approved by the Geotechnical Engineer.

In regards to the presence of the extensive layer of topsoil materials across the site, we are generally of the opinion that stripping depths of about 1.0 to 1.5 feet will likely be required during the clearing and site preparation work for the project. However, additional stripping and clearing will be required in areas where the topsoil materials are covered by surficial fill materials.

With regard to the presence of the upper layer of medium to orangish-brown, loose, clayey, silty sand subgrade soils, these soil deposits are believed to represent highly weathered glacial drift. Additionally, these clayey, silty sand soil deposits are presently loose and contain pockets of medium to large sized roots. Further, in their present condition, these loose clayey, silty sand subgrade soils possess low strength and high compressibility characteristics. As such, we are of the opinion that these upper clayey, silty sand subgrade soils should be removed in their entirety down to the surface of the medium dense to dense, clayey, silty sand glacial till bedrock deposits. However, use/re-use of the upper glacial drift soil deposits as structural fill soil may be considered acceptable and approved by the Geotechnical Engineer if the roots and/or organic matter is suitably removed.

In regards to the presence of perched and/or surface water at the site, we are generally of the opinion that all site grading and earthwork operations for the project be performed during the drier summer months which is typically June through September.

With regard to the relatively dense glacial till bedrock deposits beneath the site, we are of the opinion that these glacial till bedrock deposits will provide suitable support of foundations and/or site improvements. However, hard and/or difficult excavation conditions should be anticipated for site excavations which extend into the glacial till deposits.

The following sections of this report provide specific recommendations regarding subgrade preparation and grading as well as foundation and floor slab design and construction for the new Pacific Seafood Greenfield Processing and Distribution Facility project.

Site Preparation

As an initial step in site preparation, we recommend that the proposed new processing and distribution facility building area(s) and its associated structural and/or site improvement area(s) be stripped and cleared of all existing improvements, any existing unsuitable and/or undocumented fill materials, surface debris, existing vegetation, topsoil materials, and/or any other deleterious materials present at the time of construction. In general, we envision that the site stripping to remove existing surface improvements and/or topsoil materials as well as undocumented fill materials will generally be about 6 to 24 inches. However, localized areas requiring deeper removals, such as old foundation remnants as well as the stockpiled undocumented fill materials, will be encountered and should be evaluated at the time of construction by the Geotechnical Engineer. The stripped and cleared materials should be generally be disposed of as they are generally considered organic and unsuitable for use/reuse as structural fill materials. Additionally and as previously noted, following the site clearing and stripping,

Following the completion of the site stripping and clearing work and prior to the placement of any required structural fill materials and/or structural improvements, the upper medium to orangishbrown and loose, clayey, silty sandand/or highly weathered glacial drift subgrade soils should be removed in their entirety down to the surface of the medium dense to dense glacial till bedrock deposits. The on-site native clayey, silty sand subgrade soil materials are generally considered suitable for use/reuse as structural fill materials provided that they are free of organic materials, debris, and rock fragments in excess of about 6 inches in dimension. However, if site grading is performed during wet or inclement weather conditions, the use of the on-site native soil materials which contain significant silt and clay sized particles will be difficult at best. In this regard, during wet or inclement weather conditions, we recommend that an import structural fill material be utilized which should consist of a free-draining (clean) granular fill (sand & gravel) containing no more than about 5 percent fines. Representative samples of the materials which are to be used as structural fill materials should be submitted to the Geotechnical Engineer and/or laboratory for approval and determination of the maximum dry density and optimum moisture content for compaction.

In general, all site earthwork and grading activities should be scheduled for the drier summer months (June through September) if possible. However, if wet weather site preparation and grading is required, it is generally recommended that the stripping of the existing undocumented fill materials as well as the topsoil materials and/or underlying loose highly weathered glacial drift subgrade soils be accomplished with a tracked excavator utilizing a large smooth-toothed bucket working from areas yet to be excavated. Additionally, the loading of strippings into trucks and/or protection of moisture sensitive subgrade soils may also be required during wet weather grading and construction. Further, we recommend that areas in which construction equipment will be traveling over moisture sensitive subgrade soils be protected by covering the exposed subgrade soils with a geotextile fabric such as Mirafi 600nx followed by at least 12 inches or more of crushed aggregate base rock. The geotextile fabric should have a minimum Mullen burst strength of at least 250 pounds per square inch for puncture resistance and an apparent opening size (AOS) between the U.S. Standard No. 70 and No. 100 sieves.

All structural fill materials placed within the new processing and distribution facility building and/or pavement areas should be moistened or dried as necessary to near (within 3 percent) optimum moisture conditions and compacted by mechanical means to a minimum of 92 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Structural fill materials should be placed in lifts (layers) such that when compacted do not exceed about 8 inches. Additionally, all fill materials placed within five (5) lineal feet of the perimeter (limits) of the proposed new processing and distribution facility structure and/or pavements should be considered structural fill. All aspects of the site grading should be monitored and approved by a representative of Redmond Geotechnical Services, LLC.

Foundation Support

Based on the results of our investigation, it is our opinion that the site of the proposed new processing and distribution facility is suitable for support of the concrete tilt-up and steel framed structure provided that the following foundation design recommendations are followed. The following sections of this report present specific foundation design and construction recommendations for the planned new processing and distribution facility structure.

Project No. 1390.001.G Page No. 11

Shallow Foundations

In general, conventional shallow continuous (strip) footings and individual (spread) column footings may be supported by properly placed and approved structural fill soils based on an allowable contact bearing pressure of about 2,500 pounds per square foot (psf). However, where higher allowable contact bearing pressures are desired and/or required, an allowable contact bearing pressure of 3,000 psf may be used for design where foundations are supported by the existing medium dense to dense, clayey, silty sand glacial till bedrock deposits. These recommended allowable contact bearing pressures are intended for dead loads and sustained live loads and may be increased by one-third for the total of all loads including short-term wind or seismic loads. In general, continuous strip footings should have a minimum width of at least 16 inches and be embedded at least 18 inches below the lowest adjacent finish grade (includes frost protection). Individual column footings (where required) should be embedded at least 18 inches below grade and have a minimum width of at least 24 inches.

Total and differential settlements of foundations constructed as recommended above and supported by approved structural fill materials and/or native medium dense to dense, clayey, silty sand glacial till bedrock deposits are expected to be well within the tolerable limits for this type of concrete tilt-up and steel framed structure and should generally be less than about 1-inch and 1/2-inch, respectively.

Allowable lateral frictional resistance between the base of the footing element and the supporting subgrade bearing soil can be expressed as the applied vertical load multiplied by a coefficient of friction of 0.35 and 0.50 for native structural fill materials or the medium dense to dense, clayey, silty sand glacial till bedrock deposits, respectively. In addition, lateral loads may be resisted by passive earth pressures on footings poured "neat" against in-situ (native) subgrade soils or properly backfilled with structural fill materials based on an equivalent fluid density of 300 pounds per cubic foot (pcf). This recommended value includes a factor of safety of approximately 1.5 which is appropriate due to the amount of movement required to develop full passive resistance.

Floor Slab Support

In order to provide uniform subgrade reaction beneath concrete slab-on-grade floors, we recommend that the floor slab area be underlain by a minimum of 6 inches of free-draining (less than 5 percent passing the No. 200 sieve), well-graded, crushed rock. The crushed rock should help provide a capillary break to prevent migration of moisture through the slab. Additional moisture protection, where needed, can be provided by using a 15-mil polyolefin geo-membrane sheeting such as StegoWrap.

The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Where floor slab subgrade materials are undisturbed, firm and stable and where the underslab aggregate base rock section has been prepared and compacted as recommended above, we recommend that a modulus of subgrade reaction of 250 pci be used for design.

Retaining/Below Grade Walls

Retaining and/or below grade walls should be designed to resist lateral earth pressures imposed by native soils or granular backfill materials as well as any adjacent surcharge loads. For walls which are unrestrained at the top and free to rotate about their base, we recommend that active earth pressures be computed on the basis of the following equivalent fluid densities:

Slope Backfill (Horizontal/Vertical)	Equivalent Fluid Density/Sand (pcf)	Equivalent Fluid Density/Gravel (pcf)
Level	35	30
3H:1V	60	50
2H:1V	90	80

Non-Restrained Retaining Wall Pressure Design Recommendations

For walls which are fully restrained at the top and prevented from rotation about their base, we recommend that at-rest earth pressures be computed on the basis of the following equivalent fluid densities:

Slope Backfill (Horizontal/Vertical)	Equivalent Fluid Density/Sand (pcf)	Equivalent Fluid Density/Gravel (pcf)
Level	45	35
3H:1V	65	60
2H:1V	95	90

Restrained Retaining Wall Pressure Design Recommendations

The above recommended values assume that the walls will be adequately drained to prevent the buildup of hydrostatic pressures. Where wall drainage will not be present and/or if adjacent surcharge loading is present, the above recommended values will be significantly higher.

Backfill materials behind walls should be compacted to 90 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Special care should be taken to avoid overcompaction near the walls which could result in higher lateral earth pressures than those indicated herein. In areas within three (3) to five (5) feet behind walls, we recommend the use of hand-operated compaction equipment.

Pavements

Flexible (AC) and rigid (PCC) pavement design for the project was determined on the basis of projected (anticipated) traffic volume and loading conditions relative to laboratory subgrade soil strength ("R"-value) characteristics. Based on a laboratory subgrade "R"-value of 32 (Resilient Modulus = 5,000 to 10,000) and utilizing the Asphalt Institute Flexible Pavement Design Procedures and/or the American Association of State Highway and Transportation Officials (AASHTO) 1993 "Design of Pavement Structures" manual, we recommend that the flexible asphaltic concrete (AC) and/or rigid Portland Cement Concrete (PCC) pavement section(s) for the automobile and truck drive and/or parking areas at the site consist of the following:

	Asphaltic Concrete <u>Thickness (inches)</u>	Crushed Base Rock Thickness (inches)
Automobile Drive & Parking Areas	3.0	9.0
Heavy Truck traffic Areas	5.0	12.0
	Portland Cement Concrete Thickness (inches)	Crushed Base Rock Thickness (inches)
Automobile Parking & Drive Areas Heavy Truck Traffic Areas	5.0 7.5	4.0 6.0

Note: For wet weather construction, we recommend a minimum gravel base rock thickness of at least 12 inches. Additionally, the above recommended flexible and rigid pavement section(s) assumes a design life of 20 and 40 years, respectively. Further, the rigid PCC pavement design assumes a minimum Modulus of Rupture (M.R.) of 3rd point loading of 650 psi and minimum 28 day concrete strength of 4,000 psi.

Pavement Subgrade, Base Course & Asphalt Materials

The above recommended pavement section(s) were based on the design assumptions listed herein and on the assumption that construction of the pavement section(s) will be completed during an extended period of reasonably dry weather. All thicknesses given are intended to be the minimum acceptable. Increased base rock sections and the use of geotextile fabric may be required during wet and/or inclement weather conditions and/or in order to adequately support construction traffic and protect the subgrade during construction. Additionally, the above recommended pavement section(s) assume that the subgrade will be prepared as recommended herein, that the exposed subgrade soils will be properly protected from rain and construction traffic, and that the subgrade is firm and unyielding at the time of paving. Further, it assumes that the subgrade is graded to prevent any ponding of water which may tend to accumulate in the base course. Pavement base course materials should consist of well-graded 1-1/4 inch and/or 5/8-inch minus crushed base rock having less than 5 percent fine materials passing the No. 200 sieve. The base course and asphaltic concrete materials should conform to the requirements set forth in the latest edition of the Washington Department of Transportation, Standard Specifications for Highway Construction. The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. The asphaltic concrete paving materials should be compacted to at least 92 percent of the theoretical maximum density as determined by the ASTM D-2041 (Rice Gravity) test method.

Excavation/Slopes

Temporary excavations of up to about four (4) feet in depth may be constructed with near vertical inclinations. Temporary excavations greater than about four (4) feet but less than eight (8) feet should be excavated with inclinations of at least 1 to 1 (horizontal to vertical) or properly braced/shored. Where excavations are planned to exceed about eight (8) feet, this office should be consulted. All shoring systems and/or temporary excavation bracing for the project should be the responsibility of the excavation contractor. Permanent cut and/or fill slopes should be constructed no steeper than 2H:1V.

Depending on the time of year in which trench excavations occur, trench dewatering may be required in order to maintain dry working conditions if the invert elevations of the proposed utilities are located at and/or below the groundwater level. If groundwater is encountered during utility excavation work, we recommend placing trench stabilization materials along the base of the excavation. Trench stabilization materials should consist of 1-foot of well-graded gravel, crushed gravel, or crushed rock with a maximum particle size of 4 inches and less than 5 percent fines passing the No. 200 sieve. The material should be free of organic matter and other deleterious material and placed in a single lift and compacted until well keyed.

Surface Drainage/Ground Water

We recommend that positive measures be taken to properly finish grade the site so that drainage waters from the building and landscaping areas as well as adjacent properties or buildings are directed away from the new processing and distribution facility structure foundations and/or floor slabs. All roof drainage should be directed into conduits that carry runoff water away from the processing and distribution facility. Roof downspouts should not be connected to foundation drains. A minimum ground slope of about 2 percent is generally recommended in unpaved areas around the building.

Groundwater was generally not encountered at the site in any of the exploratory test borings (B-#1 through B-#17) at the time of drilling to depths of at least 15.0 feet beneath existing site grades. However, surface ponding was present at the time of our field work. Additionally, groundwater elevations in the area and/or beneath the subject site may fluctuate seasonally and may temporarily pond/perch near the ground surface during periods of prolonged rainfall.

Project No. 1390.001.G Page No. 15

As such, based on our current understand of the site grading required to bring the subject site to finish design grades, we are of the opinion that an underslab drainage system is not required for the proposed new processing and distribution facility structure. However, due to the presence of clayey, silty sand subgrade soils within the foundation bearing level of the proposed new processing and distribution facility structure, we are generally of the opinion that a footing/foundation drainage system should be utilized around the perimeter of the proposed processing and distribution facility structure. Additionally, a foundation drain is recommended for any below grade footing and/or retaining walls. A typical recommended perimeter footing and/or retaining wall drain detail is shown on Figure No. 3.

Seismic Design Considerations

Structures at the site should be designed to resist earthquake loading in accordance with the methodology described in the latest edition of the State of Washington Structural Specialty Code and/or Amendments to the 2012 International Building Code (IBC). The maximum considered earthquake ground motion for short period and 1.0 period spectral response may be determined from the Washington Structural Specialty Code and/or Figures 1613 (1) and 1613 (2) of the 2009 National Earthquake Hazard Reduction Program (NEHRP) "Recommended Provisions for Seismic Regulations for New Buildings and Other Structures" published by the Building Seismic Safety Council. We recommend Site Class "C" be used for design per Table 1613.5.2.

Using this information, the structural engineer can select the appropriate site coefficient values (Fa and Fv) from Tables 1613.5.3 (1) and 1613.5.3 (2) of the 2012 IBC to determine the maximum considered earthquake spectral response acceleration for the project. However, we have assumed the following response spectrum for the project:

Site Class	Ss	S 1	Fa	Fv	Sms	Sm1	SDs	Sd1
С	1.450	0.564	1.000	1.300	1.450	0.733	0.967	0.489

Table 1. IBC Seismic Design Parameters

- Notes: 1. Ss and S1 were established based on the USGS 2012 mapped maximum considered earthquake spectral acceleration maps for 2% probability of exceedence in 50 years.
 - 2. Fa and Fv were established based on IBC 2012 tables 1613.5.3 (1) and 1613.5.3 (2) using the selected Ss and S1 values.

CONSTRUCTION MONITORING AND TESTING

We recommend that **Redmond Geotechnical Services**, **LLC** be retained to provide construction monitoring and testing services during all earthwork operations for the proposed new processing and distribution facility project. The purpose of our monitoring services would be to confirm that the site conditions reported herein are as anticipated, provide field recommendations as required based on the actual conditions encountered, document the activities of the grading contractor and assess his/her compliance with the project specifications and recommendations. It is important that our representative meet with the contractor prior to grading to help establish a plan that will minimize costly overexcavation and site preparation work. Of primary importance will be observations made during site preparation, structural fill placement, footing excavations and construction as well as any retaining wall backfill.

CLOSURE AND LIMITATIONS

This report is intended for the exclusive use of the addressee and/or their representative(s) to use to design and construct the proposed new processing and distribution facility structure and its associated site improvements described herein as well as to prepare any related construction documents. The conclusions and recommendations contained in this report are based on site conditions as they presently exist and assume that the explorations are representative of the subsurface conditions between the explorations and/or across the study area. The data, analyses, and recommendations herein may not be appropriate for other structures and/or purposes. We recommend that parties contemplating other structures and/or purposes contact our office. In the absence of our written approval, we make no representation and assume no responsibility to other parties regarding this report. Additionally, the above recommendations are contingent on Redmond Geotechnical Services, LLC being retained to provide all site inspections and construction monitoring services associated with the site grading and earthwork operations as well as all foundation excavation and preparation work for this project. Redmond Geotechnical Services, LLC will not assume any responsibility and/or liability for any engineering judgment, inspection and/or testing services performed by others.

It is the owners/developers responsibility for insuring that the project designers and/or contractors involved with this project implement our recommendations into the final design plans, specifications and/or construction activities for the project. Further, in order to avoid delays during construction, we recommend that the final design plans and specifications for the project be reviewed by our office to evaluate as to whether our recommendations have been properly interpreted and incorporated into the project.

If during any future site grading and construction, subsurface conditions different from those encountered in the explorations are observed or appear to be present beneath excavations, we should be advised immediately so that we may review these conditions and evaluate whether modifications of the design criteria are required. We also should be advised if significant modifications of the proposed site development are anticipated so that we may review our conclusions and recommendations.

Project No. 1390.001.G Page No. 17

LEVEL OF CARE

The services performed by the Geotechnical Engineer for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in the area under similar budget and time restraints. No warranty or other conditions, either expressed or implied, is made.

Project No. 1390.001.G Page No. 18

REFERENCES

Adams, John, 1984, Active Deformation of the Pacific Northwest Continental Margin: Tectonics, v.3, no. 4, p. 449-472.

Applied Technology Council, ATC-13, 1985, Earthquake Damage Evaluation Data for Cailifornia.

Atwater, B.F., 1992, Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington: Journal of Geophysical Research, v. 97, p. 1901-1919.

Atwater, B.F., 1987a, A periodic Holocene recurrence of widespread, probably coseismic Subsidence in southwestern Washington: EOS, v. 68, no. 44.

Atwater, B.F., 1987b, Evidence for great Holocene earthquakes along the outer coast of Washington State: Science, v. 236, no. 4804, pp. 942-944.

Campbell, K.W., 1990, Empirical prediction of near-surface soil and soft-rock ground motion for the Diablo Canyon Power Plant site, San Luis Obispo County, California: Dames & Moore report to Lawrence Livermore National Laboratory.

Carver, G.A., and Burke, R.M., 1987, Late Holocene paleoseismicity of the southern end of the Cascadia Subduction zone [abs.]: EOS, v. 68, no. 44, p. 1240.

Chase, R.L., Tiffin, D.L., Murray, J.W., 1975, The western Canadian continental margin: In Yorath, C.J., Parker, E.R., Glass, D.J., editors, Canada's continental margins and offshore petroleum exploration: Canadian Society of Petroleum Geologists Memoir 4, p. 701-721.

Crouse, C.B., 1991a, Ground motion attenuation equations for earthquakes on the Cascadia Subduction Zone: Earthquake Spectra, v. 7, no. 2, pp. 201-236.

Crouse, C.B., 1991b, Errata to Crouse (1991a), Earthquake Spectra, v. 7, no. 3, p. 506.

Darienzo, M.E., and Peterson, C.D., 1987, Episodic tectonic subsidence recorded in late Holocene salt marshes, northern Oregon central Cascadia margin: Tectonics, v. 9, p. 1-22.

Darienzo, M.E., and Peterson, C.D., 1987, Episodic tectonic subsidence recorded in late Holocene salt marshes northwest Oregon [abs]: EOS, v. 68, no. 44, p. 1469.

EERI (Earthquake Engineering Research Institute), 1993, The March 25, 1993, Scotts Mill Earthquake, Western Oregon's Wake-Up Call: EERI Newsletter, Vol. 27, No. 5, May.

Geomatrix, 1995 Seismic Design Mapping, State of Oregon: Final Report to Oregon Department of Transportation, January.

Geologic Map Series (GMS-49), Map of Oregon Seismicity, 1841-1986 dated 1986.

Geologic Map Series (GMS-97), Geologic Map of the Coos Bay Quadrangle, Coos County, Oregon dated 1995.

Grant, W.C., and McLaren, D.D., 1987, Evidence for Holocene Subduction earthquakes along the northern Oregon coast [abs]: EOS v. 68, no. 44, p. 1239.

Grant, W.C., Atwater, B.F., Carver, G.A., Darienzo, M.E., Nelson, A.R., Peterson, C.D., and Vick, G.S., 1989, Radiocarbon dating of late Holocene coastal subsidence above the Cascadia Subduction zone-compilation for Washington, Oregon, and northern California, [abs]: EOS Transactions of the American Geophysical Union, v. 70, p. 1331.

International Conference of Building Officials (ICBO), 1994, Uniform Building Code: 1994 Edition, Whittier, CA. 1994.

Joyner, W.B., and Boore, D.M., 1998, Measurement, characterization and prediction of strong ground motion: Earthquake Engineering and Soil Dynamics II – Recent Advances in Ground Motion Evaluation, ASCE Geotech. Special Publ. No. 20, p. 43-102.

Riddihough, R.P., 1984, Recent movements of the Juan de Fuca plate system: Journal of Geophysical Research, v. 89, no. B8, p. 6980-6994.

Youngs, R.R., Day, S.M., and Stevens, J.L., 1998, Near field ground motions on rock for large Subduction earthquakes: Earthquake Engineering and Soil Dynamics II – Recent Advances in Ground Motion Evaluation, ASCE Geotech. Special Publ. No. 20, p. 445-462.

APPENDIX

FIELD EXPLORATIONS AND LABORATORY TESTING

FIELD EXPLORATION

Subsurface conditions at the site were explored by drilling seventeen (17) exploratory test borings on April 10, 2015. The approximate location of the test boring explorations are shown in relation to the existing and/or proposed new site improvements on the Site Exploration Map, Figure No. 2.

The test borings were drilled using track mounted auger drilling equipment in general conformance with ASTM Methods in Vol. 4.08, D-1586-94 and D-1587-83. The test borings were drilled to depths ranging from about 5.0 to 15.0 feet beneath existing site grades. Detailed logs of the test borings are presented on the Boring Logs, Figure No's. A-5 through A-21. The soils were classified in accordance with the Unified Soil Classification System (USCS), which is outlined on Figure No. A-4.

The exploration program was coordinated by a field engineer who monitored the drilling and exploration activity, obtained representative samples of the subsurface soils encountered, classified the soils by visual and textural examination, and maintained continuous logs of the subsurface conditions. Disturbed and/or undisturbed samples of the subsurface soils were obtained at appropriate depths and/or intervals and placed in plastic bags and/or with a thin walled ring sample.

Groundwater was generally not encountered within any of the exploratory test borings (B-#1 through B-#17) at the time of drilling at depths of between five (5) to fifteen (15) feet beneath existing site grades. However, perched surface water was present at the site at the time of our field work.

LABORATORY TESTING

Pertinent physical and engineering characteristics of the soils encountered during our subsurface investigation were evaluated by a laboratory testing program to be used as a basis for selection of soil design parameters and for correlation purposes. Selected tests were conducted on representative soil samples. The program consisted of tests to evaluate the existing (in-situ) moisture-density, maximum dry density and optimum moisture content, Atterberg Limits and gradational characteristics as well as direct shear strength, consolidation and "R"-value tests.

Dry Density and Moisture Content Determinations

Density and moisture content determinations were performed on both disturbed and relatively undisturbed samples from the test boring explorations in general conformance with ASTM Vol. 4.08 Part D-216. The results of these tests were used to calculate existing overburden pressures and to correlate strength and compressibility characteristics of the soils. Test results are shown on the test boring logs at the appropriate sample depths.

Maximum Dry Density

One (1) maximum dry density test was performed on representative sample of the upper clayey, silty sand subgrade soils in accordance with ASTM Vol. 4.08 Part D-1557-78. The test was conducted to facilitate classification of the soils and for correlation purposes. Test results appear on Figure No. A-22.

Atterberg Limits

Liquid Limit (LL) and Plastic Limit (PL) tests were performed on a representative sample of the clayey, silty sand subgrade soils in accordance with ASTM Vol. 4.08 Part D-4318-85. The test results were conducted to help facilitate the classification of the subgrade soils and for correlation purposes. The test results are shown graphically on Figure No. A-23.

Gradation Analysis

Gradation analyses were performed on representative samples of the clayey, silty sand subsurface soils in accordance with ASTM Vol. 4.08 Part D-422. The test results were used to classify the soil in accordance with the Unified Soil Classification System (USCS). The test results are shown graphically on Figure No. A-24.

Direct Shear Strength Test

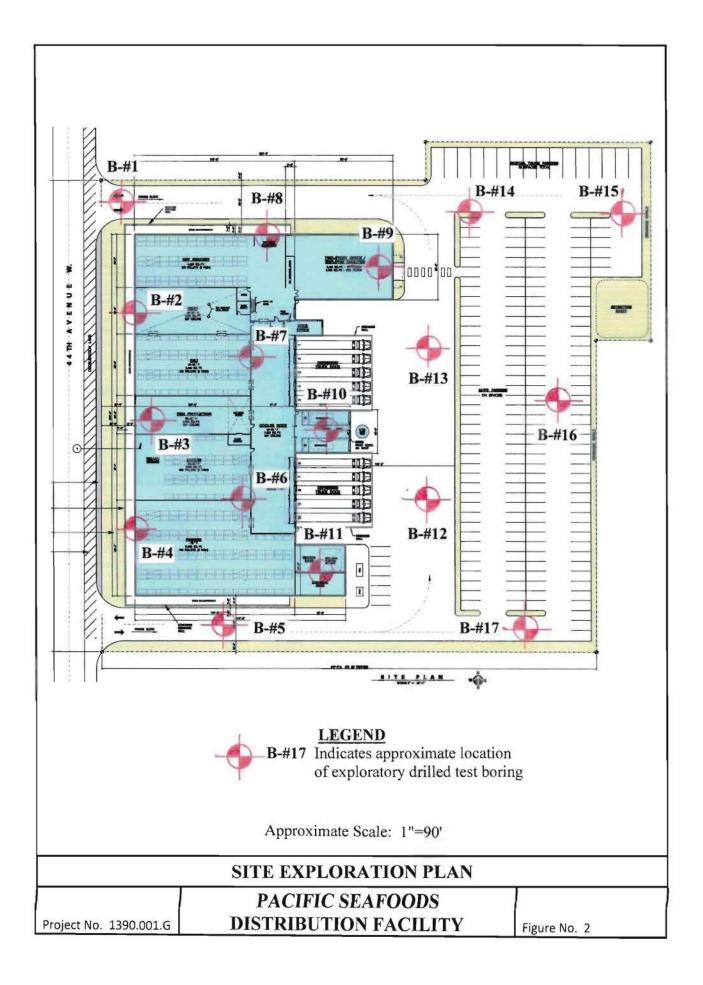
Two (2) Direct Shear Strength tests were performed on remolded samples at a continuous rate of shearing deflection (0.02 inches per minute) in accordance with ASTM Vol. 4.08 Part D-3080-79. The test results were used to determine engineering strength properties and are shown graphically on Figure No's. A-25 and A-26.

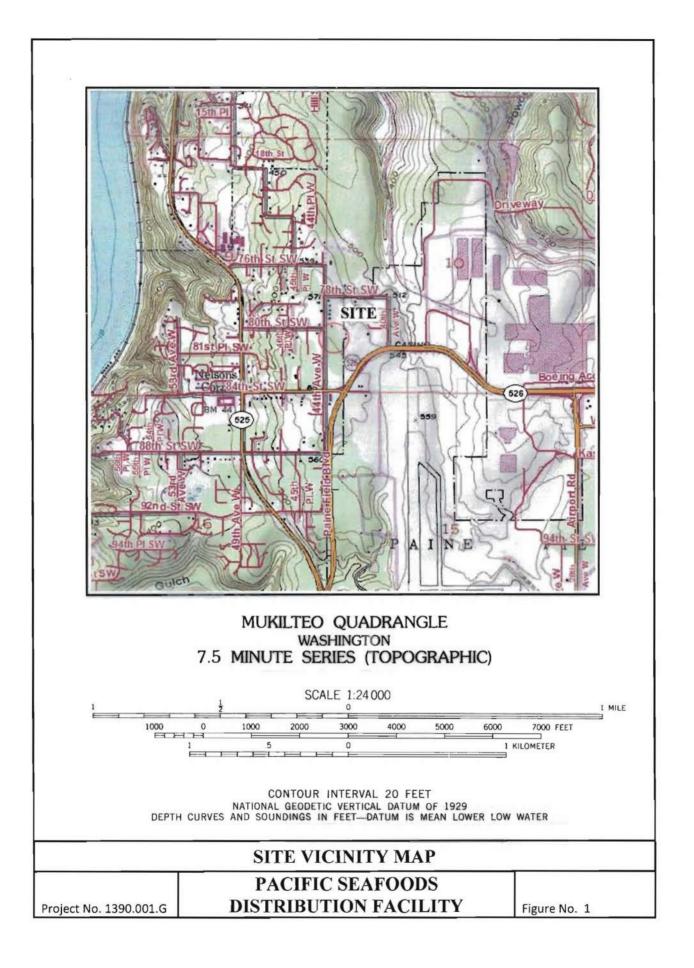
Consolidation Tests

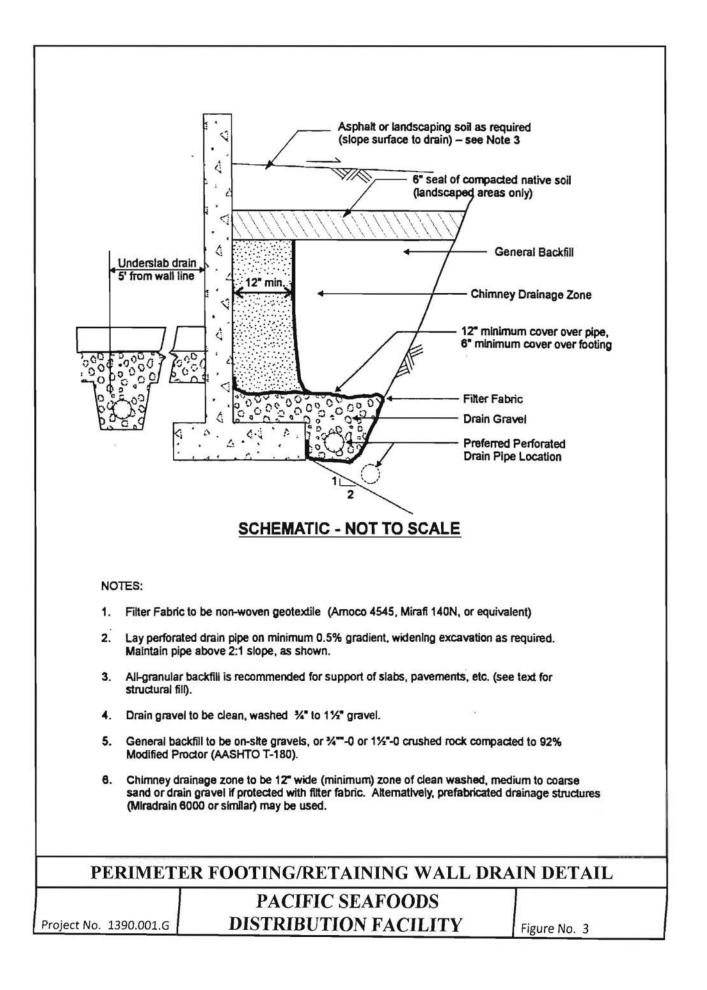
One (1) Consolidation test was performed on an undisturbed sample of the upper clayey, silty sand subgrade soils to help assess the compressibility characteristics of the near surface subgrade soils in general conformance with ASTM Vol. 4.08 Part D-2435-80.

Conventional loading increments of 100, 200, 400, ... 12,800 psf were applied after the 100 percent time of primary consolidation was identified and defined foe each loading increment. The sample was unloaded and allowed to rebound after the completion of the loading sequence. Deflection versus time readings were recorded for all load increments from 100 through 12,800 psf. The deflection corresponding to 100 percent primary consolidation was plotted on the consolidation strain versus consolidation pressure curve, which is presented on Figure No. A-27.

"R"-Value Tests


One (1) "R"-value test was performed on a representative sample of the near surface clayey, silty sand subgrade soils in general conformance with ASTM Vol. 4.08 Part D-2844. The test results were used to help evaluate the subgrade soil supporting and performance capabilities when subjected to vehicle traffic loading. The test results are shown on Figure No. A-28.


The following figures are attached and complete the Appendix:


Figure No. A-4	Key To Exploratory Boring Logs
Figure No's. A-5 through A-21	Boring Logs
Figure No. A-22	Maximum Dry Density Test Results
Figure No. A-23	Atterberg Limits Test Results
Figure No. A-24	Gradation Test Results
Figure No's. A-25 and A-26	Direct Shear Strength Test Results
Figure No. A-27	Consolidation Test Results
Figure No. A-28	Results of R (Resistance) Value Test

Boring Logs and Laboratory Test Results

	PR	IMARY	DIVISION	IS	GROUP SYMBOL		SE	CONDARY I	DIVISION	6	
		GRA	VELS	CLEAN GRAVELS	GW	Well gra		avels, gravel-sand	mixtures, litt	e or no	
SOILS	MATERIAL D. 200	MORE TH		(LESS THAN 5% FINES)		Poorly g no fir	raded g nes.	gravels or gravel-s	and mixtures	little or	
	NO.	FRACT	ION IS	GRAVEL WITH	GM	Silty gra	ivels, gr	avel-sand-silt mix	tures, non-p	lastic fines.	
GRAINED	AN N		SIEVE	FINES	GC	Clayey g	Clayey gravels, gravel-sand-clay mixtures, plastic fines.				
GRA	THAN HALF OF M LARGER THAN NO. SIEVE SIZE	SAN	NDS	CLEAN SANDS	sw	Well gra	Well graded sands, gravelly sands, little or no fines.				
COARSE	ARGE	MORE TH OF CO	IAN HALF DARSE	(LESS THAN 5% FINES)		Poorly g	raded s	ands or gravelly s	sands, little o	r no fines.	
0, 10	MORE IS L		ION IS R THAN	SANDS	SM	Silty sar	nds, sar	id-silt mixtures, n	on-plastic fir	nes.	
-	Σ		SIEVE	FINES	sc	Clayey s	sands, s	and-clay mixtures	, plastic fine	s.	
SJ ,	OF LER SIZE	5	SILTS AND	CLAYS	ML	Inorgani claye	c silts a y fine s	and very fine sand ands or clayey silts	ds, rock flour s with slight p	silty or lasticity.	
	HALF OF SMALLER SIEVE SIZ		LIQUID LIM		CL	Inorgani clays	c clays , sandy	of low to medium clays, silty clays,	lean clays.	ravelly	
E E	-		LESS THAT	N 50%	OL	Organic	silts an	d organic silty clay	s of low plas	sticity.	
	THAN IAL IS D. 200	S	SILTS AND	CLAYS	мн	Inorgani Silty	c silts, i soils, e	micaceous or diato lastic silts.	maceous fine	sandy or	
FINE	MORE THAN MATERIAL IS HAN NO. 200		LIQUID LIN	IT IS	СН	Inorgani	c clays	of high plasticity.	fat clays.		
12	MOR MATE THAN		GREATER TH	AN 50%	он	Organic	clays o	f medium to high	plasticity, orç	ganic silts.	
	HI	GHLY ORG	SANIC SOIL	.S	Pt	Peat an	d other	highly organic sc	oils.		
SIL	NON-PL	CLAYS GRAVELS A ASTIC SIL Y LOOSE JOOSE UM DENSE DENSE Y DENSE	ND TS BLOW 4 10 30	S. STANDARD S 40 SANE MEDIU G VS/FOOT [†] 0 - 4 - 10 0 - 30 0 - 50 VER 50	10 IM C RAIN SIZ	OARSE	LTS r	GRAVEL	그는 그는 것 같은 것 것 같이 가지 않는 것 같이 많이	BOULDERS	
RELATIVE DENSITY CONSISTENCY * Number of blows of 140 pound hammer falling 30 inches to drive a 2 inch 0.D. (1-3/8 inch 1.D.) split spoon (ASTM D-1586). * Unconfined compressive strength in tons/sq. ft. as determined by laboratory testing or approximated by the standard penetration test (ASTM D-1586), pocket penetrometer, torvane, or visual observation. KEY TO EXPLORATORY BORING LOGS Unified Soil Classification System (ASTM D-2487) PACIFIC SEAFOODS DISTRIBUTION FACILITY Mukilteo, Washington Mukilteo, Washington											
PO	Box 2054		AND, OREG	ON 97294	PROJECT			DATE	Figure A	-4	
L					1390.00	1.6					

DRILLI	NG COMPANY:	Gregoi	cy Dri	lling	RIG: CME 55 DATE: 4/10/15					
BORIN	G DIAMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 580'±					
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#1					
	x		25.4	ML	Dark brown, wet, soft, organic, sandy, clayey SILT (Topsoil)	-				
5 -	x 27		22.7 SM Medium to orangish-brown, very moist, loose to medium dense, clayey, silty SAND with occasional gravels and roots (Highly Weathered Glacial Drift)							
				SM Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)						
10 -					Total Depth = 5.0 feet No groundwater encountered at time of exploration					
22										
15 -										
20 -										
25 -										
30 -										
0000	CT.NO. 100	0.001			BORING LOG	_				
PROJE	ст NO. 139	0.001.	G		ACIFIC SEAFOODS FIGURE NO. A-5					

2

DRILLING COMPANY:		OMPANY:	Grego	ory Dr	illin	IG RIG: CME 55 DATE: 4/10/15						
BORIN	G DI	AMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 580'±						
DEPTH (FEET)	BAG SAMPLE	DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#2						
		-			GM/ ML	FILL: Gray-brown, very moist, medium dense, slightly organic, slightly clayey, silty and sandy GRAVEL with topsoil						
5 -	x x	26		24.9	SM	NATIVE GROUND: Orangish-brown, very moist, loose to medium dense, clayey, silty SAND with occasional gravels and roots (Highly Weathered Glacial Drift)						
10 -	x	37		19.4	SM	Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)						
						Total Depth = 10.0 feet No groundwater encountered at time of exploration						
15 —												
20												
25 -												
30 -												
						PORTNELOC						
		-				BORING LOG						
PROJE	CT N	0. 1390	.001.0	3	PA	ACIFIC SEAFOODS FIGURE NO. A-6						

DRILLI	NG	OMPANY:	Grego	ory Dr	illir	ng RIG: CME 55 DATE: 4/10/15				
BORIN	G DI	AMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 580'±				
DEPTH (FEET)	BAG SAMPLE	DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#3				
Bornson Bornson										
30 -	1									
						BORING LOG				
PROJE	CT N	0. 139	0.001.	G	P	PACIFIC SEAFOODS FIGURE NO. A-7				

DRILLI	NG C	OMPANY:	Grego	ry Dri	llin	ng RIG: CME 55 DATE:4/10/15	
BORIN	G DI	AMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 585'±	
DEPTH (FEET)	BAG SAMPLE	DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#4	
5 - 10 - 15 -	x x x	24 28 33		23.7 19.7 18.8	ML SM SM	Dark brown, very moist to wet, soft, organic, sandy, clayey SILT (Topsoil) Medium to orangish-brown, very moist, loose to medium dense, clayey, silty SAND with occasional gravels and roots (Highly Weathered Glacial Drift) Gray to gray-brown, very moisr, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till) Total Depth = 10.0 feet No groundwater encountered at time of exploration	
20 - 25 - 30 -	-						
			_			BORING LOG	_
PROJE	CTN	139	0.001.	G	P	PACIFIC SEAFOODS FIGURE NO. A-8	

DRILLI	NG COMPANY:	Grego	ory Dr	illin	g RIG: CME 55 DATE: 4/10/15							
BORIN	G DIAMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 588'±							
ДЕРТН (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#5							
5 -	x 4 x 5			SM	FILL: Medium to gray-brown, moist to very moist, poorly compacted, slightly clayey, silty SAND with gravel and traces of organics							
				ML <u>NATIVE GROUND</u> : Dark brown, very mois soft, slightly organic, sandy, claye SILT (Old Topsoil Zone)								
10 -	x 29		SM Medium to orangish-brown, very mois loose to medium dense, clayey, silt SAND with occasional gravels and ro (Highly Weathered Glacial Drift)									
15 -				SM	Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till) Total Depth = 10.0 feet No groundwater encountered at time of exploration							
20 -												
25 -												
30 -												
					BORING LOG							
PROJE	ст но. 139	0.001.0	G	P	ACIFIC SEAFOODS FIGURE NO. A-9							

DRILLIN	NG COMPANY:	Grego	ry Dri	llind	RIG: CME 55 DATE: 4/10/15				
BORIN	G DIAMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 585'±				
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#6				
					FILL: Brown, moist, highly organic, Bark Chips and Topsoil				
	X 6		26.8	ML	NATIVE GROUND: Dark brown, very moist to wet, soft, organic, sandy, clayey SILT (Topsoil)				
5 —	x 27		23.0	SAND with occasional gravel and root: (Highly Weathered Glacial Drift)					
10 -	x 35		18.5	SM	Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)				
15 -	x 39		18.1						
¢.					Total Depth = 15.0 feet No groundwater encountered at time of exploration				
20 -	- 								
25 -									
30 -									
					BORING LOG				
PROJE	ст но. 139	0.001.	G		PACIFIC SEAFOODS FIGURE NO. A-10				

DRILLI	NG COMPANY:	Grego	ry Dri	llin	RIG: CME 55 DATE: 4/10/15					
BORIN	G DIAMETER:	6.0"	DRIVE WI	EIGHT:	140# DROP: 30" ELEVATION: 585'±					
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#7					
				ML	Dark brown, very moist to wet, soft, organic, sandy, clayey SILT (Topsoil)					
5	X 27	27 SM Medium to orangish-brown, very mo wet, loose, clayey, silty SAND wi occasional gravel and roots (High Weathered Glacial Drift)								
	X 26			SM	Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)					
10 -	x 33									
15 -					Total Depth = 11.5 feet Minor groundwater seepage encountered at 2.0 feet at time of exploration					
20 -										
25 —										
30 -					BORING LOG					
DROUG	CT.NO. 1.201	0.001								
PROJE	CT NO. 139(5.001.	G		PACIFIC SEAFOODS FIGURE NO. A-11					

BORNO DAMFIER: 6.0" DRIVE WEIGHT: 140# DROP: 30" ELEVATION: 582'± The second	DRILLING COMPAN	: Greg	ory Dr:	illir	ng RIG: CME 55 DATE: 4/10/15							
FILL: Gray-brown, moist, moderately well compacted, silty, sandy GRAVEL (Base) NL NATIVE GROUND: Dark brown, moist to very moist, medium stiff to stiff, clayey, sandy SLT with trace of organics (Old Topsoil Zone) S 34 ML Medium to orangish-brown, very moist, medium dense, clayey, silty SAND with occasional gravel and roots (Highly Weatheted Glacial Drift) 10 X 36 SM Gray to gray-brown, very moist, medium dense, clayey, silty SAND with gravel and cobbles (Glacial Till) Total Depth = 10.0 feet No groundwater encountered at time of exploration 20 20 30		6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 5821±							
x 23 x 24 x 25 x 36 x	DEPTH (FEET) BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)								
	x 23 x 23 x 23 x 34 x 34 x 34 x 36 x											
				-	BORING LOG							
THE THE THE THE TELEVISION AND THE TELEVIS AND THE TELEVISION AND THE TELEVIS AN	PROJECT NO. 13	90.001	G									

DRILLI	NG COMPANY:	Greg	ory Dr	illir	ng RIG: CME 55 DATE: 4/10/15			
BORIN	G DIAMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 578'±			
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#9			
				PCC	Portland Cement Concrete Slab			
	x 5		29.6	GM	FILL: Gray-brown, damp, moderately well compacted, silty, sandy GRAVEL (Base)			
5 -	x - 24		24.2	ML	NATIVE GROUND: Dark brown, very moist, medium stiff, sandy, clayey SILT with trace of organics (Old Topsoil Zone)			
			21.3	SM	Medium to orangish-brown, very moist, medium dense, clayey, silty SAND with occasional gravel and roots (Highly Weathered Glacial Drift)			
10 -	x 40	0 SM Gray to gray-brown, very moist medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)						
15 -					Total Depth = 11.5 feet No groundwater encountered at time of exploration			
20 -								
25 -								
30 -								
					BORING LOG			
PROJE	ст но. 139	0.001.	G	1	PACIFIC SEAFOODS FIGURE NO. A-13			

DRILLI	NG COMPANY	Grego	ory Dr	illir	ıg	RIG: CME 55	DATE: 4	/10/15			
BORIN	G DIAMETER:	6.0"	DRIVE WE	IGHT:	140#	DROP: 30"	ELEVATION	581'±			
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)			ESCRIPTION RING NO. B-#10				
				ML	soft,	brown, very m highly organ (Topsoil)					
5 -	x 21			SM	mediu occas	m to orangish m dense, clay ional gravel eted Glacial	ey, silty SA and roots (H	ND with			
				SM	Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)						
10 -	X 35				No gr	Depth = 10.0 oundwater end ration		time of			
20 -											
25 -				•							
30 -					BODT	NG LOG					
0000	CTNO 13	00 001					FIGURE NO	2 14			
PROJE	CT NO. 13	90.001.	G		PACIFIC	SEAFOODS	FIGURE NO.	A-14			

DRILLING CO	MPANY:	Grego	ory Dr	illi	ing RIG: CME 55 DATE: 4/10/15							
BORING DIAN	METER:	6.0"	DRIVE WE	IGHT:	140#	DROP:	30"	ELEVATION:	588'±			
DEPTH (FEET) BAG SAMPLE	DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)			SOIL DESCI BORING	RIPTION i NO. B-#11				
x	4			SM	<pre>very moist, poorly compacted, slightly clayey, silty SAND with gravel and traces of organics</pre> L <u>NATIVE GROUND</u> : Dark brown, very moist, soft, slightly organic, sandy, clayey SILT (Old Topsoil Zone)							
				ML								
10 - X	23			SM								
15 - X	36			SM	dense t gravel	o dense and col	e, claye obles (C	very moist ey, silty s Glacial Til	SAND with			
	-				Total D No grou explora	ndwate		ntered at t	time of			
20	-											
25	-											
30												
					BORING	LOG						
PROJECT NO.	139	0.001.	G	Р	ACIFIC SE			FIGURE NO. A-	15			

		ory Drill	
BORING DIAMETE		DRIVE WEIGHT:	140# DROP: 30" ELEVATION: 582'±
DEPTH (FEET) BAG SAMPLE DRIVE SAMPLE	BLOWS/FOOT DRY DENSITY (pcf)	MOISTURE CONTENT (%) SOIL CLASS.	SOIL DESCRIPTION BORING NO. B-#12
5	22	ML SM SM	Dark brown, wet to saturated, very soft highly organic, sandy, clayey SILT (Topsoil) Medium to orangish-brown, wet to saturated, loose, clayey, silty SAND with occasional gravel and roots (Highly Weathered Glacial Drift) Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till) Total Depth = 6.5 feet Groundwater seepage encountered at a depth of 2 feet at time of exploration
	-		BORING LOG
PROJECT NO.	1390.001	C	PACIFIC SEAFOODS FIGURE NO. A-16

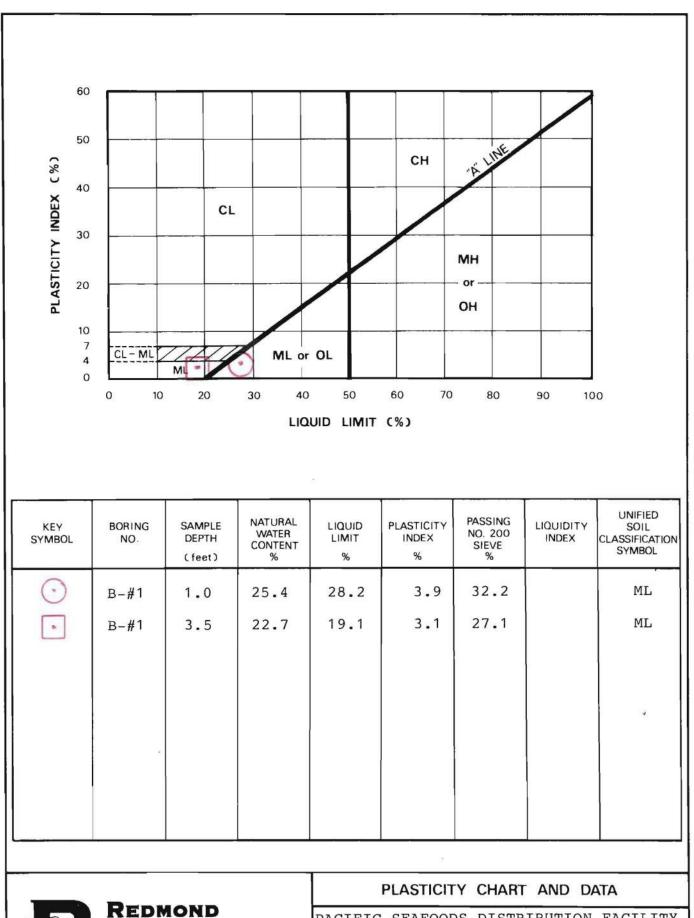
DRILLI	NG C	OMPANY:	Grego	ory Dr	illir	ng RIG: CME 55 DATE: 4/10/15	
BORIN	G DI	AMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 578'±	
DEPTH (FEET)	BAG SAMPLE	DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#13	
B 5 10 15 20 25	BA		DR		ML SM SM	Dark brown, wet to saturated, very soft highly organic, sandy, clayey SILT (Topsoil) Medium to orangish-brown, wet to saturated, loose, clayey, silty SAND with occasional gravel and roots (Highly Weathered Glacial Drift) Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till) Total Depth = 5.0 feet Groundwater seepage encountered at a depth of 1.0 feet at time of exploration	
30 -							
						BORING LOG	
PROJE	CT N	0. 1390	0.001.	G]	PACIFIC SEAFOODS FIGURE NO. A-17	

DRILLI	NG COMPANY:	Grego	ory Dr	illir	ng	RIG: CME 55	DATE: 4/10/15	
BORIN	G DIAMETER:	6.0"	DRIVE WE	IGHT:	140#	DROP: 30"	ELEVATION: 574 ±	
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)			ESCRIPTION RING NO. B-#14	
5	x 24			ML SM	high (Tops Medin satur with (High Gray dense grave Tota Groun	ly organic, sa soil) um to orangish rated, loose, occasional gr hly Weathered to gray-brown e to dense, cl el and cobbles l Depth = 5.0 ndwater seepag	saturated, very so ndy, clayey SILT -brown, wet to clayey, silty SAND avel and roots Glacial Drift) , very moist, medin ayey, silty SAND with (Glacial Till) feet e encountered at a at time of drilling	um ith
15 -								
20 -								
25 –								
30 -								
					BORI	NG LOG		
PROJE	ст но. 13	90.001.	G	F	ACIFIC	SEAFOODS	FIGURE NO. A-18	

1

DRILLING	G COMPANY:	Greg	ory Dr	illi	ng RIG: CME 55 DATE: 4/10/15
BORING	DIAMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 569'±
DEPTH (FEET)	BAG SAMPLE DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#15
5 - 10 - 15 - 20 - 25 - 30 -	x 26			ML SM	Dark brown, saturated, very soft, highly organic, sandy, clayey SILT (Topsoil) Medium to orangish-brown, wet to saturated, loose, clayey, silty SAND with occasional gravel and roots (Highly Weathered Glacial Drift) Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till) Total Depth = 5.0 feet Groundwater encountered above surface grades at time of exploration
	_				BORING LOG
PROJECT	NO 130	0 001	c	P	
. HOILCI	139	0.001.	9	the contract of the second	ACIFIC SEAFOODS FIGURE NO. A-19

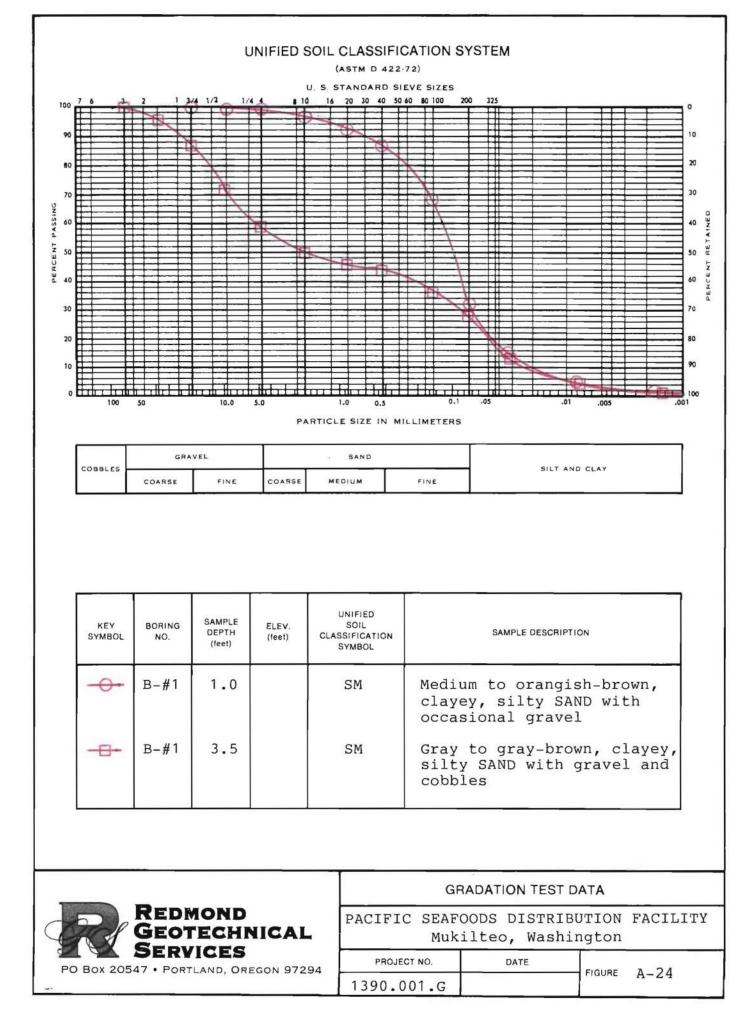
DRILLIN	NG COM	PANY:	Grego	ory Dr	illir	g R	IG: CME	55	DATE: 4/10/15	
BORIN	G DIAME	TER:	6.0"	DRIVE WE	IGHT:	140#	DROP:	30"	ELEVATION: 574	
DEPTH (FEET)	BAG SAMPLE	BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)			SOIL DESC	RIPTION SNO. B-#16	
	-					FILL:	Bark Ch	jps		÷
	x	24			ML	very s	oft, hi	ghly org	prown, saturated, ganic, sandy, soil Zone)	
5 -					SM	satura with o	ted, loo ccasion	ose, cla al grave	rown, wet to ayey, silty SAND el and roots acial Drift)	
10					SM	dense gravel	to dens and co	e, claye bbles (C	very moist, mediu ey, silty SAND wi Glacial Till)	
	-					Ground	water e		et red at the ground xploration	-
15 —										
20 -										
25 -										
25 -										
30 -										
					_	DODT	0100			
						BORIN	<u>G LOG</u>			
PROJEC	CT NO.	139	0.001.	G]	ACIFIC	SEAFOOD	S	FIGURE NO. A-20	

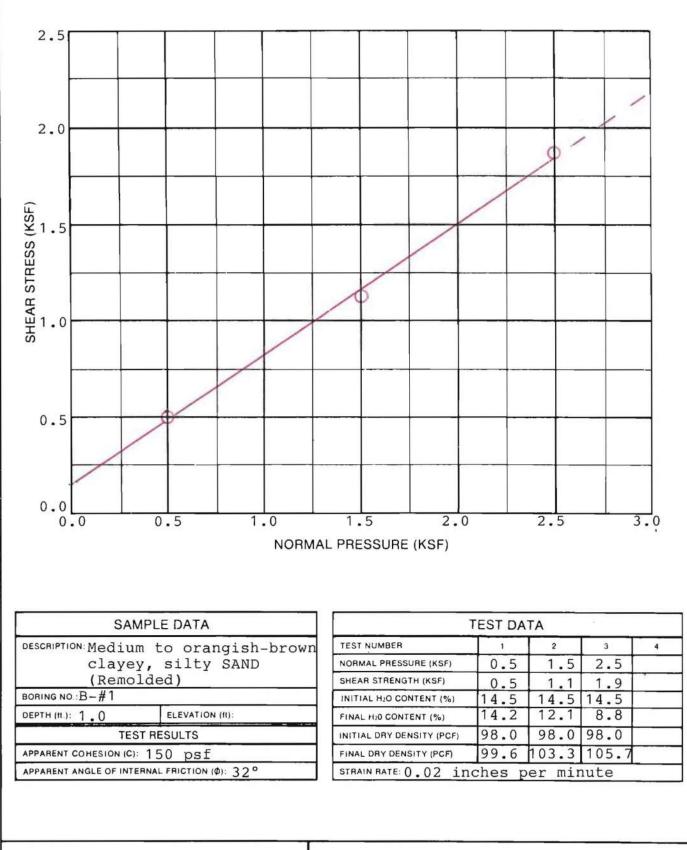

DRILLI	NG C	OMPANY:	Grego	ory Dr	illir	ng RIG: CME 55 DATE: 4/10/15
BORIN	G DI	AMETER:	6.0"	DRIVE WE	IGHT:	140# DROP: 30" ELEVATION: 580' ±
DEPTH (FEET)	BAG SAMPLE	DRIVE SAMPLE BLOWS/FOOT	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION BORING NO. B-#17
					ML	Dark brown, wet to saturated, very soft, highly organic, sandy, clayey SILT (Topsoil)
5 -	x	28			SM	Medium to orangish-brown, wet to saturated, loose, clayey, silty SAND with occasional gravel and roots (Highly Weathered Glacial Drift)
					SM	Gray to gray-brown, very moist, medium dense to dense, clayey, silty SAND with gravel and cobbles (Glacial Till)
10 -						Total Depth = 5.0 feet Groundwater encountered at the ground surface at time of exploration
		_				
15 -		6				
20 -						
25 -						
30 -	1					
						BORING LOG
PROJE	CT N	0. 1390	0.001.	G	1	PACIFIC SEAFOODS FIGURE NO. A-21

MAXIMUM DENSITY TEST RESULTS

SAMPLE LOCATION	SOIL DESCRIPTION	MAXIMUM DRY DENSITY (pcf)	OPTIMUM MOISTURE CONTENT (%)
B-#1 @: 1.0'	Medium to orangish-brown, clayey, silty SAND with gravel	108.0	14.5
B-#1 @ 3.5'	Gray to gray-brown, clayey, silty SAND with gravel and cobbles	112.0	13.0

EXPANSION INDEX TEST RESULTS


	SAMPLE	INITIAL MOISTURE (%)	COMPACTED DRY DENSITY (pcf)	FINAL MOISTURE (%)	VOLUMETRIC SWELL (%)	EXPANSION INDEX	EXPANSIVE CLASS.
				•			
ĸ							
MA	XIMUN	I DENS	TYSE	PANSI		X TEST	RESULTS
PROJE	ст но.: 1390	0.001.G	PAC	IFIC SEAFO	ODS	FIGURE NO.	: A-22



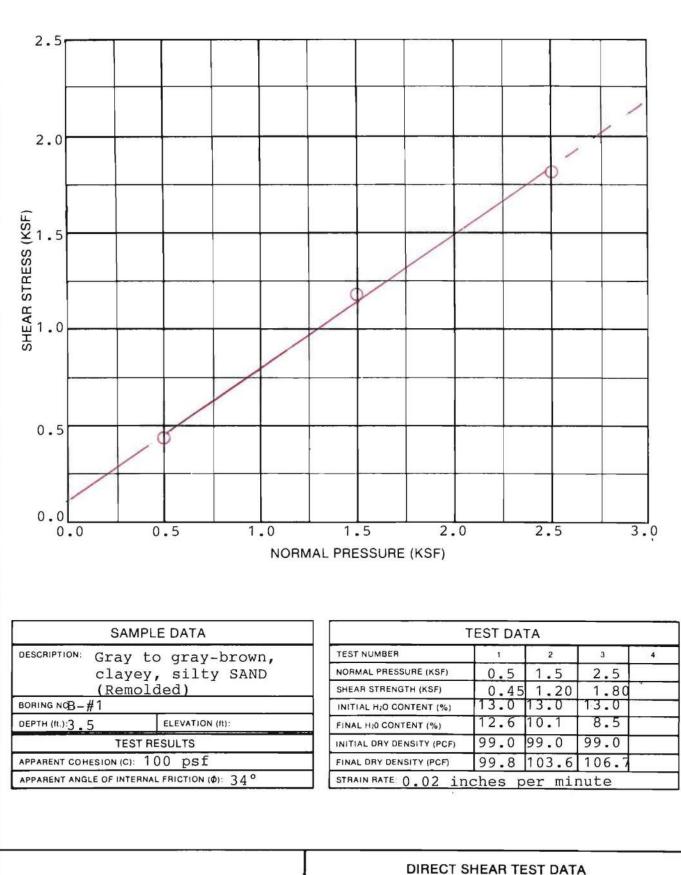
PO BOX 20547 • PORTLAND, OREGON 97294

PACIFIC SEAFOODS DISTRIBUTION FACILITY Mukilteo, Washington

PROJECT NO. DATE Figure A-23

PROJECT NO.

1390.001.G

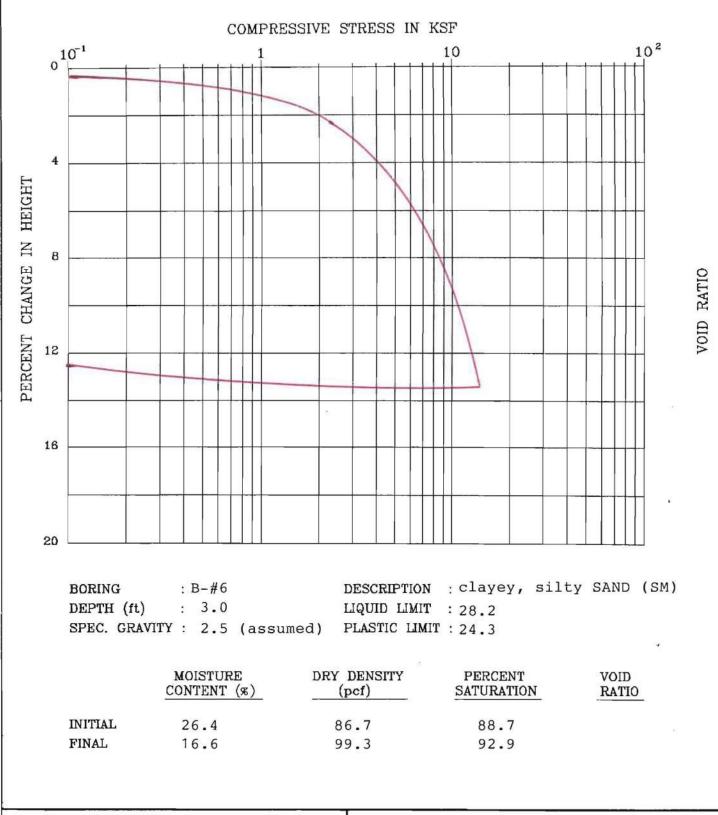

REDMOND GEOTECHNICAL SERVICES	
PO BOX 20547 . PORTLAND, OREGON 97294	

DIRECT SHEAR TEST DATA

PACIFIC SEAFOODS DISTRIBUTION FACILITY Mukilteo, Washington

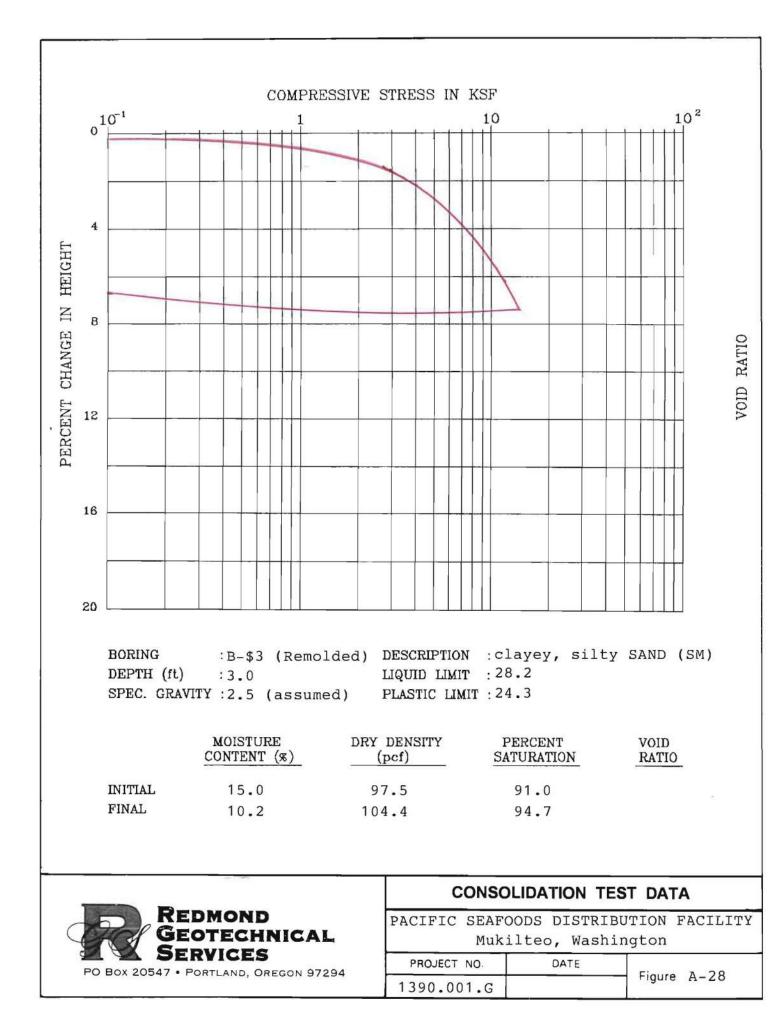
DATE

Figure A-25



PACIFIC SEAFOODS DISTRIBUTION FACILITY Mukilteo, Washington

PROJECT NO.	DATE	-	
1390.001.G		Figure	1


A-26

CONSOLIDATION TEST DATA

PACIFIC SEAFOODS DISTRIBUTION FACILITY Mukilteo, Washington PROJECT NO. DATE 1390.001.G

RESULTS OF R (RESISTANCE) VALUE TESTS

SAMPLE LOCATION: B-#1

SAMPLE DEPTH: 1.0 feet bgs

Specimen	A	В	С
Exudation Pressure (psi)	219	329	431
Expansion Dial (0.0001")	0	1	2
Expansion Pressure (psf)	0	3	8
Moisture Content (%)	17.3	14.1	10.7
Dry Density (pcf)	94.4	99.1	103.7
Resistance Value, "R"	22	34	45

SAMPLE LOCATION: B-#16

SAMPLE DEPTH: 3.5 feet bgs

Specimen	A	B	C
Exudation Pressure (psi)	209	326	433
Expansion Dial (0.0001")	0	1	2
Expansion Pressure (psf)	0	3	8
Moisture Content (%)	17.6	14.5	11.1
Dry Density (pcf)	93.9	98.8	102.6
Resistance Value "R"	20	32	43
"R"-Value at 300 psi Exudation Press	are = 31		

Project No. 1390.001.G Page No. 1

July 29, 2016

Mr. Tyson Wentz PACLAND Engineering & Development 11400 SE 8th Street, Suite 345 Bellevue, Washington 98004

Dear Mr. Wentz:

Re: Supplemental Geotechnical Consultation Services, Proposed Pacific Seafood Processing Facility, 8007 44th Avenue West, Mukilteo, Washington

In accordance with your request, we are providing you with our opinion with regard to the use of an allowable infiltration rate of 0.30 inches per hour (in/hr) at the above subject project site.

As you are aware, we previously performed a Geotechnical Investigation at the site the results of which were presented in our formal report dated May 1, 2014. Additionally, we performed supplemental consultation services and Field (Pilot) Infiltration Testing Services at the site in accordance with the Washington State Department of Ecology Stormwater Management Manual for Western Washington Volume III Hydrologic Analysis and Flow Control BMP's test method the results of which were presented in our letter report dated May 29, 2015.

Specifically, we understand that the project proposes to use a storm water vault control structure and bio-filtration swale that will be open and/or lined at the bottom to promote infiltration and recharge to the existing easterly downstream wetland. Additionally, we understand that the storm water vault has been designed for an infiltration rate of 0.30 inches per hour (in/hr).

Based on the results of our previous pilot field infiltration testing at the site, we are generally of the opinion that an infiltration rate of 0.30 inches per hour (in/hr) is suitable for the project and the proposed storm water vault.

Project No. 1390.001.G Page No. 1

However, as was previously noted in the above supplemental letter report, the infiltration rate of 0.30 inches per hour is considered low by industry standards and will likely only provide a limited amount of recharge to the wetland. Additionally, as the rate of infiltration at and/or across the site may vary with time and/or with changes in site utilization, we recommend that a verification of the infiltration rate of the proposed storm water vault control structure be performed following its construction.

We appreciate this opportunity to be of service to you at this time and trust that the above information is suitable to your present needs.

Sincerely,

Daniel M. Redmond, P.E., G.E. President/Principal Engineer

APPENDIX C

WWHM2012 OUTPUT FOR VAULT SIZING

WWHM2012 PROJECT REPORT

Project Name: Pacific Seafood vault2
Site Name:
Site Address:
City :
Report Date: 8/23/2016
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 0.80
Version : 2015/09/30

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

Low Flow Threshold for POC 2 : 50 Percent of the 2 Year

High Flow Threshold for POC 2: 50 year

PREDEVELOPED LAND USE

Name : Ext Basin Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Mod C, Pasture, Mod C, Lawn, Flat	<u>acre</u> 1.94 1.94 .51
Pervious Total	4.39
Two and the second the second stars	
Impervious Land Use ROADS FLAT DRIVEWAYS FLAT	<u>acre</u> 0.59 0.93
ROADS FLAT	0.59

Element Flows To: Surface Interflow

Groundwater

MITIGATED LAND USE

Name : BUILDING Bypass: No

GroundWater: No

Pervious Land Use	acre
Pervious Total	0
Impervious Land Use ROOF TOPS FLAT	<u>acre</u> 1.43
Impervious Total	1.43
Basin Total	1.43

Element Flows To:		
Surface	Interflow	Groundwater
Vault 1	Vault 1	

```
Name : Vault 1
Width : 40 ft.
            120 ft.
Length :
Depth:
              11 ft.
Infiltration On
Infiltration rate: 0.3
Infiltration safety factor: 2
Total Volume Infiltrated (ac-ft.): 383.527
Total Volume Through Riser (ac-ft.): 109.45
Total Volume Through Facility (ac-ft.): 492.977
Percent Infiltrated: 77.8
Total Precip Applied to Facility: 0
Total Evap From Facility: 0
Discharge Structure
Riser Height: 10.5 ft.
Riser Diameter: 12 in.
Orifice 1 Diameter: 2 in. Elevation: 0.5 ft.
Orifice 2 Diameter: 0.75 in. Elevation: 4.5 ft.
Orifice 3 Diameter: 6 in. Elevation: 9.7 ft.
Element Flows To:
Outlet 1
                     Outlet 2
```

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.110	0.000	0.000	0.000
0.1222	0.110	0.013	0.000	0.066
0.2444	0.110	0.026	0.000	0.066
0.3667	0.110	0.040	0.000	0.066
0.4889	0.110	0.053	0.000	0.066
0.6111	0.110	0.067	0.036	0.066
0.7333	0.110	0.080	0.052	0.066
0.8556	0.110	0.094	0.064	0.066
0.9778	0.110	0.107	0.075	0.066
	0.110			
1.1000		0.121	0.084	0.066
1.2222	0.110	0.134	0.092	0.066
1.3444	0.110	0.148	0.099	0.066
1.4667	0.110	0.161	0.106	0.066
1.5889	0.110	0.175	0.113	0.066
1.7111	0.110	0.188	0.119	0.066
1.8333	0.110	0.202	0.125	0.066
1.9556	0.110	0.215	0.131	0.066
2.0778	0.110	0.229	0.136	0.066
2.2000	0.110	0.242	0.141	0.066
2.3222	0.110	0.255	0.146	0.066
2.4444	0.110	0.269	0.151	0.066
2.5667	0.110	0.282	0.156	0.066
2.6889	0.110	0.296	0.160	0.066
2.8111	0.110	0.309	0.165	0.066
2.9333	0.110	0.323	0.169	0.066
3.0556	0.110	0.336	0.173	0.066
3.1778	0.110	0.350	0.177	0.066
3.3000	0.110	0.363	0.181	0.066
3.4222	0.110	0.377	0.185	0.066
3.5444	0.110	0.390	0.189	0.066
3.6667	0.110	0.404	0.193	0.066
3.7889	0.110	0.417	0.196	0.066
3.9111	0.110	0.431	0.200	0.066
4.0333	0.110	0.444	0.204	0.066
4.1556	0.110	0.457	0.207	0.066
4.2778	0.110	0.471	0.211	0.066
4.4000	0.110	0.484	0.214	0.066
4.5222	0.110	0.498	0.220	0.066
4.6444	0.110	0.511	0.226	0.066
4.7667	0.110	0.525	0.232	0.066
4.8889	0.110	0.538	0.236	0.066
5.0111	0.110	0.552	0.241	0.066
5.1333	0.110	0.565	0.245	0.066
5.2556	0.110	0.579	0.250	0.066
5.3778	0.110	0.592	0.254	0.066
5.5000	0.110	0.606	0.258	0.066
5.6222	0.110	0.619	0.261	0.066
5.7444	0.110	0.633	0.265	0.066
5.8667	0.110	0.646	0.269	0.066
5.9889	0.110	0.659	0.272	0.066
6.1111	0.110	0.673	0.272	0.066
6.2333	0.110	0.686	0.280	0.066
6.3556	0.110	0.700	0.280	0.066
6.4778	0.110	0.713	0.285	0.066
6.6000	0.110	0.727	0.290	0.066
6.7222	0.110	0.740	0.293	0.066
V. / 444	0.110	0.710	0.275	0.000

6.8444	0.110	0.754	0.296	0.066
6.9667	0.110	0.767	0.300	0.066
7.0889	0.110	0.781	0.303	0.066
7.2111	0.110	0.794	0.306	0.066
7.3333	0.110	0.808	0.309	0.066
7.4556	0.110	0.821	0.312	0.066
7.5778	0.110	0.835	0.315	0.066
7.7000	0.110	0.848	0.318	0.066
7.8222	0.110	0.862	0.321	0.066
7.9444	0.110	0.875	0.324	0.066
8.0667	0.110	0.888	0.327	0.066
8.1889	0.110	0.902	0.330	0.066
8.3111	0.110	0.915	0.333	0.066
8.4333	0.110	0.929	0.336	0.066
8.5556	0.110	0.942	0.338	0.066
8.6778	0.110	0.956	0.341	0.066
8.8000	0.110	0.969	0.344	0.066
8.9222	0.110	0.983	0.347	0.066
9.0444	0.110	0.996	0.349	0.066
9.1667	0.110	1.010	0.352	0.066
9.2889	0.110	1.023	0.355	0.066
9.4111	0.110	1.037	0.357	0.066
9.5333	0.110	1.050	0.360	0.066
9.6556	0.110	1.064	0.363	0.066
9.7778	0.110	1.077	0.638	0.066
9.9000	0.110	1.090	0.805	0.066
10.022	0.110	1.104	0.925	0.066
10.144	0.110	1.117	1.024	0.066
10.267	0.110	1.131	1.111	0.066
10.389	0.110	1.144	1.189	0.066
10.511	0.110	1.158	1.273	0.066
10.633	0.110	1.171	1.836	0.066
10.756	0.110	1.185	2.640	0.066
10.878	0.110	1.198	3.327	0.066
11.000	0.110	1.212	3.707	0.066
11.122	0.110	1.225	4.042	0.066
11.244	0.000	0.000	4.327	0.000

Name : Parking Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Lawn, Flat	.08
Pervious Total	0.08
Impervious Land Use	acre
ROADS FLAT	1.27
Impervious Total	1.27
Basin Total	1.35

Element Flows To: Surface Interflow Center Island swales Center Island swales

Groundwater

Name : Center Island swales Bottom Length: 60.00 ft. Bottom Width: 16.00 ft. Manning's n: 0.24 Channel bottom slope 1: 0.01 To 1 Channel Left side slope 0: 3 To 1 Channel right side slope 2: 3 To 1 Infiltration On Infiltration rate: 0.3 Infiltration safety factor: 1 Wetted surface area On Total Volume Infiltrated (ac-ft.): 38.546 Total Volume Through Riser (ac-ft.): 114.993 Total Volume Through Facility (ac-ft.): 153.54 Percent Infiltrated: 25.1 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 Discharge Structure Riser Height: 0 ft. Riser Diameter: 0 in.

Element Flows To: Outlet 1 Outlet 2 Biofiltration Swale

Channel Hydraulic Table					
Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)	
0.0000	0.022	0.000	0.000	0.000	
0.0056	0.022	0.000	0.001	0.006	
0.0111	0.022	0.000	0.005	0.006	
0.0167	0.022	0.000	0.010	0.006	
0.0222	0.022	0.000	0.017	0.006	
0.0278	0.022	0.000	0.025	0.006	
0.0333	0.022	0.000	0.034	0.006	
0.0389	0.022	0.000	0.044	0.006	
0.0444	0.022	0.001	0.055	0.006	
0.0500	0.022	0.001	0.067	0.006	
0.0556	0.022	0.001	0.080	0.006	
0.0611	0.022	0.001	0.094	0.006	
0.0667	0.022	0.001	0.109	0.006	
0.0722	0.022	0.001	0.124	0.006	
0.0778	0.022	0.001	0.141	0.006	
0.0833	0.022	0.001	0.158	0.006	
0.0889	0.022	0.002	0.176	0.006	
0.0944	0.022	0.002	0.195	0.006	
0.1000	0.022	0.002	0.215	0.006	

0.1056 0.1111 0.1167	0.022 0.023 0.023	0.002 0.002 0.002	0.235 0.256 0.278	0.006 0.006 0.007
0.1222	0.023	0.002	0.300	0.007
0.1278	0.023	0.002	0.324	0.007
0.1333 0.1389	0.023 0.023	0.003 0.003	0.348 0.372	0.007 0.007
0.1444	0.023	0.003	0.398	0.007
0.1500	0.023	0.003	0.423	0.007
0.1556 0.1611	0.023 0.023	0.003 0.003	0.450 0.477	0.007 0.007
0.1667	0.023	0.003	0.477	0.007
0.1722	0.023	0.003	0.534	0.007
0.1778	0.023	0.004	0.563	0.007
0.1833 0.1889	0.023 0.023	0.004 0.004	0.593 0.623	0.007 0.007
0.1944	0.023	0.004	0.655	0.007
0.2000	0.023	0.004	0.686	0.007
0.2056	0.023	0.004	0.719	0.007
0.2111 0.2167	0.023 0.023	0.004 0.005	0.751 0.785	0.007 0.007
0.2222	0.023	0.005	0.819	0.007
0.2278	0.023	0.005	0.854	0.007
0.2333 0.2389	0.024 0.024	0.005	0.889	0.007
0.2389	0.024	0.005 0.005	0.925 0.961	0.007 0.007
0.2500	0.024	0.005	0.998	0.007
0.2556	0.024	0.005	1.036	0.007
0.2611 0.2667	0.024 0.024	0.006 0.006	1.074 1.113	0.007 0.007
0.2722	0.024	0.006	1.152	0.007
0.2778	0.024	0.006	1.192	0.007
0.2833	0.024	0.006	1.233	0.007
0.2889 0.2944	0.024 0.024	0.006 0.006	1.274 1.315	0.007 0.007
0.3000	0.024	0.007	1.357	0.007
0.3056	0.024	0.007	1.400	0.007
0.3111	0.024	0.007	1.443	0.007
0.3167 0.3222	0.024 0.024	0.007 0.007	1.487 1.531	0.007 0.007
0.3278	0.024	0.007	1.576	0.007
0.3333	0.024	0.007	1.621	0.007
0.3389 0.3444	0.024 0.024	0.007	1.667	0.007
0.3500	0.024	0.008 0.008	1.713 1.760	0.007 0.007
0.3556	0.025	0.008	1.808	0.007
0.3611	0.025	0.008	1.856	0.007
0.3667 0.3722	0.025 0.025	0.008 0.008	1.904 1.953	0.007 0.007
0.3778	0.025	0.008	2.003	0.007
0.3833	0.025	0.009	2.053	0.007
0.3889	0.025	0.009	2.103	0.007
0.3944 0.4000	0.025 0.025	0.009 0.009	2.154 2.206	0.007 0.007
0.4056	0.025	0.009	2.258	0.007
0.4111	0.025	0.009	2.311	0.007
0.4167	0.025	0.009	2.364	0.007

Name : Dev Site Bypass: Yes

GroundWater: No

Pervious Land Use	acre
C, Lawn, Flat	.74
Pervious Total	0.74
Impervious Land Use	acre
ROADS FLAT	1.46
DRIVEWAYS FLAT	0.93
Impervious Total	2.39
Basin Total	3.13

Element Flows To:GroundwaterSurfaceInterflowGroundwaterBiofiltration SwaleBiofiltration Swale

Name : Biofiltration Swale Bottom Length: 100.00 ft. Bottom Width: 30.00 ft. Manning's n: 0.24 Channel bottom slope 1: 0.016 To 1 Channel Left side slope 0: 3 To 1 Channel right side slope 2: 3 To 1 Infiltration On Infiltration rate: 0.3 Infiltration safety factor: 1 Wetted surface area On Total Volume Infiltrated (ac-ft.): 107.018 Total Volume Through Riser (ac-ft.): 324.122 Total Volume Through Facility (ac-ft.): 431.14 Percent Infiltrated: 24.82 Total Precip Applied to Facility: 0 Total Evap From Facility: 0 <u>Discharge Structure</u> Riser Height: 0 ft. Riser Diameter: 0 in. Element Flows To: Outlet 1 Outlet 2

Vault 1

Channel Hydraulic Table

	Channel	. Hydraulic	Table	
Stage(feet)	Area(ac.)		Discharge(cfs)	Infilt(cfs)
0.0000	0.068	0.000	0.000	0.000
0.0111	0.069	0.000	0.013	0.020
0.0222	0.069	0.001	0.041	0.020
0.0333	0.069	0.002	0.081	0.021
0.0444	0.069	0.003	0.131	0.021
0.0556	0.069	0.003	0.190	0.021
0.0667	0.069	0.004	0.258	0.021
0.0778	0.069	0.005	0.334	0.021
0.0889	0.070	0.006	0.418	0.021
0.1000	0.070	0.007	0.508	0.021
0.1111	0.070	0.007	0.606	0.021
0.1222	0.070	0.008	0.711	0.021
0.1333	0.070	0.009	0.822	0.021
0.1444	0.070	0.010	0.940	0.021
0.1556	0.071	0.010	1.064	0.021
0.1667	0.071	0.011	1.194	0.021
0.1778	0.071	0.012	1.330	0.021
0.1889	0.071	0.013	1.472	0.021
0.2000	0.071	0.014	1.620	0.021
0.2111	0.071	0.014	1.773	0.021
0.2222	0.071	0.015	1.932	0.021
0.2333	0.072	0.016	2.096	0.021
0.2444	0.072	0.017	2.266	0.021
0.2556	0.072	0.018	2.441	0.021
0.2667	0.072	0.018	2.622	0.021
0.2778	0.072	0.019	2.807	0.022
0.2889	0.072	0.020	2.998	0.022
0.3000	0.073	0.021	3.194	0.022
0.3111	0.073	0.022	3.394	0.022
0.3222	0.073	0.022	3.600	0.022
0.3333	0.073	0.023	3.810	0.022
0.3444	0.073	0.024	4.026	0.022
0.3556	0.073	0.025	4.246	0.022
0.3667	0.073	0.026	4.471	0.022
0.3778	0.074	0.027	4.701	0.022
0.3889	0.074	0.027	4.935	0.022
0.4000	0.074	0.028	5.174	0.022
0.4111	0.074	0.029	5.418	0.022
0.4222	0.074	0.030	5.666	0.022

0.4333 0.4444 0.4556 0.4667 0.4778 0.4889 0.5000 0.5111 0.5222 0.5333 0.5444 0.5556 0.5667 0.5778 0.5889 0.6000 0.6111 0.6222 0.6333	0.074 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.077 0.077 0.077 0.077	0.031 0.032 0.032 0.033 0.034 0.035 0.036 0.037 0.037 0.037 0.038 0.039 0.040 0.041 0.042 0.042 0.042 0.042 0.043 0.045 0.046	5.919 6.176 6.438 6.704 6.974 7.249 7.529 7.812 8.100 8.392 8.689 8.990 9.295 9.604 9.917 10.23 10.55 10.88 11.21	0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.023	
0.5778	0.076	0.042	9.604	0.023	
0.5889	0.077	0.042	9.917	0.023	
0.6000	0.077	0.043	10.23	0.023	
0.6111	0.077	0.044	10.55	0.023	
0.6222	0.077	0.045	10.88	0.023	

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.82 Total Impervious Area:3.66

Flow Frequency Return	n Periods for	Predeveloped	. POC #1
Return Period	<pre>Flow(cfs)</pre>		
2 year	0.496905		
5 year	0.687259		
10 year	0.82884		
25 year	1.026244		
50 year	1.187292		
100 year	1.360809		
Flow Frequency Return	n Periods for	Mitigated. H	POC #1
Return Period	<pre>Flow(cfs)</pre>		
2 year	1.156909		
5 year	1.599355		
10 year	1.928317		

25 year	2.386851
50 year	2.760843
100 year	3.163708

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated 1949 0.456 1.053 1950 0.654 1.501 1951 0.491 1.269 1.007 1952 0.443 1953 0.581 1.441 1954 0.926 1.850 1955 0.622 1.420 1956 0.313 0.647 1957 0.550 1.140 1958 1.090 2.626 1959 0.446 1.111 1960 0.412 0.934 1961 1.534 3.761 1.249 1962 0.520 1963 0.719 1.649 1964 0.377 0.818 1965 0.332 0.771 0.829 1966 0.340 1967 0.959 2.384

1968 1969 1970	0.527 1.074 0.376	1.315 2.438 0.886
1971	0.562	1.366
1972	0.715	1.781
1973	0.567	1.369
1974	0.699	1.757
1975	0.562	1.331
1976	0.375 0.370	0.906
1977 1978	0.370	0.893 0.703
1979	0.741	1.676
1980	0.336	0.793
1981	0.375	0.896
1982	0.375	0.916
1983	0.518	1.209
1984	0.439	1.094
1985	0.683	1.729
1986	0.736	1.535
1987	0.555	1.370
1988	0.427	1.033
1989	0.520	1.180
1990	0.322	0.772
1991	0.433	1.075
1992 1993	0.450	1.016 0.806
1993	0.342 0.319	0.806
1995	0.319	0.879
1996	0.565	1.076
1997	0.843	1.487
1998	0.625	1.575
1999	0.336	0.717
2000	0.866	2.035
2001	0.347	0.867
2002	0.325	0.799
2003	0.436	1.104
2004	0.841	2.028
2005	0.398	0.990
2006	0.619	1.293
2007	0.604	1.180 0.985
2008 2009	0.450 0.422	0.985 1.028
2009	0.722	1.020

Stream Protection Duration Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 1 1.5335 3.7612 2 1.0903 2.6258 3 1.0742 2.4376 4 0.9586 2.3843 5 0.9258 2.0348 б 0.8662 2.0276 7 0.8431 1.8503 8 0.8406 1.7815

1.7566

1.7294

9

10

0.7410

0.7356

11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.7186 0.7147 0.6992 0.6832 0.6537 0.6250 0.6224 0.6188 0.6044 0.5809 0.5675 0.5645 0.5645 0.5623 0.5617	1.6758 1.6492 1.5754 1.5349 1.5007 1.4873 1.4407 1.4196 1.3697 1.3659 1.3659 1.3312 1.3150 1.2931
25 26	0.5553 0.5500	1.2689 1.2485
27	0.5273	1.2094
28 29	0.5203 0.5201	1.1797 1.1797
30	0.5178	1.1397
31	0.4912	1.1112
32 33	0.4558 0.4505	1.1043 1.0936
34	0.4502	1.0757
35	0.4461	1.0750
36	0.4431	1.0530
37 38	0.4386 0.4363	1.0327 1.0283
39	0.4330	1.0161
40	0.4274	1.0070
41	0.4215	0.9901
42 43	0.4120	0.9850
43	0.3979 0.3765	0.9337 0.9159
45	0.3758	0.9059
46	0.3755	0.8964
47 48	0.3752	0.8929
40 49	0.3746 0.3695	0.8856 0.8795
50	0.3567	0.8670
51	0.3467	0.8290
52	0.3415	0.8179
53 54	0.3402 0.3358	0.8060 0.7993
55	0.3355	0.7929
56	0.3336	0.7715
57	0.3319	0.7710
58 59	0.3247 0.3223	0.7374 0.7172
60	0.3192	0.7025
61	0.3129	0.6468

Stream Protection Duration POC #1

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit Pe	rcentag	e Pass/Fail
0.2485	1675	14983	894	Fail
0.2579	1477	13845	937	Fail
0.2674	1271	12722	1000	Fail
0.2769	1112	11781	1059	Fail
0.2864	981	10818	1102	Fail
0.2959	895	10033	1121	Fail
0.3054	801	9263	1156	Fail
0.3148	722	8566	1186	Fail
0.3243	643	7843	1219	Fail
0.3338	576	7304	1268	Fail
0.3433	505	6731	1332	Fail
0.3528	467	6267	1341	Fail
0.3623	412	5756	1397	Fail
0.3717	383	5358	1398	Fail
0.3812	329	4954	1505	Fail
0.3907	294	4626	1573	Fail
0.4002	255	4020	1675	Fail
0.4002			1725	Fail
	233	4021		
0.4192	207	3730	1801	Fail
0.4286	187	3506	1874	Fail
0.4381	170	3240	1905	Fail
0.4476	158	3054	1932	Fail
0.4571	141	2866	2032	Fail
0.4666	133	2704	2033	Fail
0.4760	123	2517	2046	Fail
0.4855	109	2372	2176	Fail
0.4950	100	2222	2222	Fail
0.5045	96	2118	2206	Fail
0.5140	94	2005	2132	Fail
0.5235	84	1881	2239	Fail
0.5329	78	1774	2274	Fail
0.5424	72	1675	2326	Fail
0.5519	69	1564	2266	Fail
0.5614	64	1472	2300	Fail
0.5709	59	1396	2366	Fail
0.5804	56	1317	2351	Fail
0.5898	50	1246	2492	Fail
0.5993	47	1179	2508	Fail
0.6088	44	1123	2552	Fail
0.6183	41	1061	2587	Fail
0.6278	34	1002	2947	Fail
0.6373	33	952	2884	Fail
0.6467	29	906	3124	Fail
0.6562	27	848	3140	Fail
0.6657	25	797	3188	Fail
0.6752	24	761	3170	Fail
0.6847	23	731	3178	Fail
0.6942	21	693	3300	Fail
0.7036	19	660	3473	Fail
0.7131	18	625	3472	Fail
0.7226	15	587	3913	Fail
0.7321	15	559	3726	Fail
0.7416	13	532	4092	Fail
0.7511	13	502	3861	Fail
0.7605	13	484	3723	Fail
			-	

0.7700 0.7795 0.7890	11 11 11	458 436 419	4163 3963 3809	Fail Fail Fail
0.7985	11	396	3600	Fail
0.8080	11	377	3427	Fail
0.8174	11	361	3281	Fail
0.8269	9	348	3866	Fail
0.8364	9	330	3666	Fail
0.8459	7	314	4485	Fail
0.8554	7	299	4271	Fail
0.8649	7	292	4171	Fail
0.8743	б	280	4666	Fail
0.8838	б	264	4400	Fail
0.8933	б	254	4233	Fail
0.9028	б	248	4133	Fail
0.9123	б	233	3883	Fail
0.9218	б	224	3733	Fail
0.9312	5	213	4260	Fail
0.9407	5	203	4059	Fail
0.9502	5	197	3940	Fail
0.9597	4	191	4775	Fail
0.9692	4	182	4550	Fail
0.9787	4	173	4325	Fail
0.9881	4	163	4075	Fail
0.9976	4	156	3900	Fail
1.0071 1.0166	4	151	3775 3650	Fail
1.0166	4 4	146		Fail
1.0261	4 4	140 133	3500 2225	Fail
1.0350	4	133	3325 3175	Fail Fail
1.0450	4	127	3050	Fail
1.0545	4	116	2900	Fail
1.0735	4	115	2875	Fail
1.0830	3	108	3600	Fail
1.0925	2	105	5250	Fail
1.1019	2	103	5150	Fail
1.1114	2	101	5050	Fail
1.1209	1	99	9900	Fail
1.1304	1	95	9500	Fail
1.1399	1	94	9400	Fail
1.1494	1	91	9100	Fail
1.1588	1	85	8500	Fail
1.1683	1	84	8400	Fail
1.1778	1	83	8300	Fail
1.1873	1	81	8100	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.3032 acre-feet On-line facility target flow: 0.4518 cfs.

LID Report

LID Technique	Used for	Total Volumn	Volumn	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volumn	Volumn
Volumn	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Center Island swales POC	N	139.75			N
25.10					
Total Volume Infiltrated		139.75	0.00	0.00	
25.10 0.00	08	No Treat. Credi	t		
Compliance with LID Standa	ird 8				
Duration Analysis Result =	Failed				

Stream Protection Duration

Predeveloped Landuse Totals for POC #2 Total Pervious Area:4.39 Total Impervious Area:1.52

Mitigated Landuse Totals for POC #2 Total Pervious Area:0.82 Total Impervious Area:5.09

	turn Periods for Predeveloped. POC #2	
Return Period	<pre>Flow(cfs)</pre>	
2 year	0.52135	
5 year	0.721503	
10 year	0.87044	
25 year	1.078179	
50 year	1.247715	
100 year	1.430424	
Flow Frequency Re	turn Periods for Mitigated. POC #2	
Return Period	Flow(cfs)	
2 year	0.157733	
E	0. 1.0.0.5.0	
5 year	0.193959	
5 year 10 year	0.193959 0.219547	
-		
10 year	0.219547	
10 year 25 year	0.219547 0.253712	

Stream Protection DurationAnnual Peaks for Predeveloped and Mitigated.POC #2YearPredevelopedMitigated19490.4810.151

1950	0.686	0.165
1951	0.520	0.160
1952	0.463	0.128
1953	0.614	0.121
1954	0.962	0.141
1955	0.648	0.184
1956	0.318	0.159
1957	0.569	0.177
1958	1.152	0.178
1959	0.470	0.158
1960	0.432	0.180
1961	1.619	0.195
1962	0.551	0.163
1963	0.754	0.170
1964	0.390	0.159
1965	0.350	0.128
1966	0.359	0.125
1967	1.017	0.169
1968	0.557	0.204
1969	1.127	0.154
1970	0.396	0.131
1971	0.593	0.158
1972	0.755	0.177
1973	0.599	0.123
1974	0.741	0.149
1975	0.591	0.136
1976	0.396	0.174
1977	0.391	0.158
1978	0.346	0.113
1979	0.771	0.207
1980	0.349	0.149
1981	0.396	0.134
1982	0.396	0.211
1983	0.544	0.160
1984	0.463	0.163
1985	0.723	0.185
1986	0.767	0.298
1980 1987 1988 1989 1990 1991	0.587 0.450 0.543 0.338 0.457	0.205 0.160 0.109 0.141 0.169
1992	0.472	0.129
1993	0.357	0.149
1994	0.337	0.145
1995	0.377	0.152
1996	0.580	0.201
1997	0.863	0.334
1998	0.659	0.139
1999	0.345	0.141
2000	0.918	0.152
2001	0.366	0.116
2002	0.342	0.148
2003	0.462	0.126
2004	0.890	0.215
2005	0.421	0.174
2006	0.631	0.219

2007	0.624	0.154
2008	0.470	0.339
2009	0.444	0.152

		Predeveloped and Mitigated. POC #2
Rank	Predeveloped	Mitigated
1	1.6192	0.3386
2	1.1518	0.3340
3	1.1270	0.2981
4	1.0165	0.2186
5	0.9621	0.2145
б	0.9179	0.2107
7	0.8902	0.2070
8	0.8634	0.2054
9	0.7711	0.2044
10	0.7668	0.2005
11	0.7546	0.1952
12	0.7537	0.1849
13	0.7410	0.1845
14	0.7230	0.1798
15	0.6862	0.1776
16	0.6594	0.1767
17	0.6483	0.1766
18	0.6315	0.1740
19	0.6239	0.1739
20	0.6142	0.1703
21	0.5992	0.1690
22	0.5932	0.1686
23	0.5909	0.1651
24	0.5872	0.1629
25	0.5801	0.1629
26	0.5694	0.1602
27	0.5569	0.1602
28	0.5507	0.1598
29	0.5438	0.1589
30	0.5430	0.1586
31	0.5198	0.1582
32	0.4807	0.1579
33	0.4724	0.1575
34	0.4704	0.1544
35	0.4700	0.1539
36	0.4630	0.1523
37	0.4626	0.1518
38	0.4618	0.1516
39	0.4574	0.1509
40	0.4498	0.1495
41	0.4441	0.1494
42	0.4318	0.1493
43	0.4208	0.1478
44	0.3961	0.1451
45	0.3959	0.1409
46	0.3959	0.1407
47	0.3956	0.1406
48	0.3906	0.1391

50	0.3774	0.1341
51	0.3664	0.1314
52	0.3586	0.1290
53	0.3574	0.1279
54	0.3501	0.1277
55	0.3494	0.1256
56	0.3460	0.1248
57	0.3455	0.1227
58	0.3416	0.1214
59	0.3382	0.1163
60	0.3372	0.1134
61	0.3181	0.1086

Stream Protection Duration POC #2 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.2607	1569	269	17	Pass
0.2706	1364	236	17	Pass
0.2806	1177	208	17	Pass
0.2906	1049	180	17	Pass
0.3006	940	127	13	Pass
0.3105	852	96	11	Pass
0.3205	761	63	8	Pass
0.3305	684	30	4	Pass
0.3404	611	0	0	Pass
0.3504	540	0	0	Pass
0.3604	473	0	0	Pass
0.3703	437	0	0	Pass
0.3803	398	0	0	Pass
0.3903	356	0	0	Pass
0.4003	306	0	0	Pass
0.4102	276	0	0	Pass
0.4202	241	0	0	Pass
0.4302	221	0	0	Pass
0.4401	199	0	0	Pass
0.4501	179	0	0	Pass
0.4601	162	0	0	Pass
0.4700	146	0	0	Pass
0.4800	135	0	0	Pass
0.4900	125	0	0	Pass
0.5000	114	0	0	Pass
0.5099	106	0	0	Pass
0.5199	97	0	0	Pass
0.5299	93	0	0	Pass
0.5398	89	0	0	Pass
0.5498	81	0	0	Pass
0.5598	75	0	0	Pass
0.5697	71	0	0	Pass
0.5797	67	0	0	Pass
0.5897	62	0	0	Pass
0.5997	60	0	0	Pass
0.6096	55	0	0	Pass

0.6196 0.6296 0.6395	51 43 41	0 0 0	0 0 0	Pass Pass Pass
0.6495	38	0	0	Pass
0.6595	36	0	0	Pass
0.6694	32	0	0	Pass
0.6794	29	0	0	Pass
0.6894	27	0	0	Pass
0.6994	25	0	0	Pass
0.7093	25	0	0	Pass
0.7193	24	0	0	Pass
0.7293	22	0	0	Pass
0.7392	20	0	0	Pass
0.7492	19	0	0	Pass
0.7592	15	0	0	Pass
0.7692	14	0	0	Pass
0.7791	12	0	0	Pass
0.7891	12	0	0	Pass
0.7991	12	0	0	Pass
0.8090	12	0	0	Pass
0.8190	11	0	0	Pass
0.8290	11	0	0	Pass
0.8389	11	0	0	Pass
0.8489	11	0	0	Pass
0.8589	11	0	0	Pass
0.8689	9	0	0	Pass
0.8788	8	0	0	Pass
0.8888	8	0	0	Pass
0.8988	7	0	0	Pass
0.9087	7	0	0	Pass
0.9187	6	0	0	Pass
0.9287	6	0	0	Pass
0.9386	6	0	0	Pass
0.9486	6	0	0	Pass
0.9586	6	0	0	Pass
0.9686	5	0	0	Pass
0.9785	5	0	0	Pass
0.9885	5	0	0	Pass
0.9985	5	0	0	Pass
1.0084	5	0	0	Pass
1.0184 1.0284	4 4	0 0	0	Pass
	4 4		0	Pass
1.0383 1.0483	4 4	0 0	0	Pass
1.0483	4 4	0	0 0	Pass
1.0683	4	0	0	Pass Pass
1.0782	4	0	0	Pass
1.0882	4	0	0	Pass
1.0982	4	0	0	Pass
1.1081	4	0	0	Pass
1.1181	4	0	0	Pass
1.1281	3	0	0	Pass
1.1380	3	0	0	Pass
1.1480	3	0	0	Pass
1.1580	2	0	0	Pass
1.1680	2	0	0	Pass
1.1779	2	0	0	Pass
-		-	-	

1.1879	1	0	0	Pass
1.1979	1	0	0	Pass
1.2078	1	0	0	Pass
1.2178	1	0	0	Pass
1.2278	1	0	0	Pass
1.2377	1	0	0	Pass
1.2477	1	0	0	Pass

Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0.3135 acre-feet On-line facility target flow: 0.47 cfs. Adjusted for 15 min: 0.47 cfs. Off-line facility target flow: 0.2668 cfs. Adjusted for 15 min: 0.2668 cfs.

LID Report

LID Technique Percent Water Quality	Used for Percent	Total Volumn Comment	Volumn	Infiltration	Cumulative
Volumn	Treatment? Water Quality	Needs	Through	Volumn	Volumn
	~ -	Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Vault 1 POC	N	448.62			N
77.80					
Biofiltration Swale	Ν	392.38			Ν
24.82					
Center Island swales	N	139.75			Ν
25.10					
Total Volume Infiltrated		980.75	0.00	0.00	
49.09 0.00 Compliance with LID Standa		No Treat. Credi	t		
Duration Analysis Result =	Failed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2016; All Rights Reserved.

APPENDIX D

CONVEYANCE ANAYLSIS (TO BE SUBMITTED LATER)

APPENDIX E

OPERATIONS AND MAINTENANCE CHECKLISTS

The owner or operator of the project shall be responsible for maintaining the stormwater facilities in accordance with local requirements. Proper maintenance is important for adequate functioning of the stormwater facilities. Operations and maintenance guidelines are provided below.

No. 2 – Infiltration

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
General	Trash & Debris	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Poisonous/Noxious Vegetation	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Contaminants and Pollution	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Rodent Holes	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1)
Storage Area	Sediment	Water ponding in infiltration pond after rainfall ceases and appropriate time allowed for infiltration.	Sediment is removed and/or facility is cleaned so that infiltration system
		(A percolation test pit or test of facility indicates facility is only working at 90% of its designed capabilities. If two inches or more sediment is present, remove).	works according to design.
Filter Bags (if applicable)	Filled with Sediment and Debris	Sediment and debris fill bag more than 1/2 full.	Filter bag is replaced or system is redesigned.
Rock Filters	Sediment and Debris	By visual inspection, little or no water flows through filter during heavy rain storms.	Gravel in rock filter is replaced.
Side Slopes of Pond	Erosion	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
Emergency Overflow Spillway and Berms over 4 feet in height.	Tree Growth	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Piping	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
Emergency Overflow Spillway	Rock Missing	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
	Erosion	See "Detention Ponds" (No. 1).	See "Detention Ponds" (No. 1).
Pre-settling Ponds and Vaults	Facility or sump filled with Sediment and/or debris	6" or designed sediment trap depth of sediment.	Sediment is removed.

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
Storage Area	Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.
	Debris and Sediment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for 1/2 length of storage vault or any point depth exceeds 15% of diameter.	All sediment and debris removed from storage area.
		(Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)	
	Joints Between Tank/Pipe Section	Any openings or voids allowing material to be transported into facility.	All joint between tank/pipe sections
		(Will require engineering analysis to determine structural stability).	are sealed.
	Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.
	Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determines that the vault is not structurally sound.	Vault replaced or repaired to design specifications and is structurally sound.
		Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence of soil particles entering the vault through the walls.	No cracks more than 1/4-inch wide at the joint of the inlet/outlet pipe.
Manhole	Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.
	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.
Catch Basins	See "Catch Basins" (No. 5)	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 3 – Closed Detention Systems (Tanks/Vaults)

No. 4 – Control Structure/Flow Restrictor	
---	--

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
	Structural Damage	Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
		Connections to outlet pipe are not watertight and show signs of rust.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
		Any holesother than designed holesin the structure.	Structure has no holes other than designed holes.
Cleanout Gate	Damaged or Missing	Cleanout gate is not watertight or is missing.	Gate is watertight and works as designed.
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3).
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 5 – Catch Basins

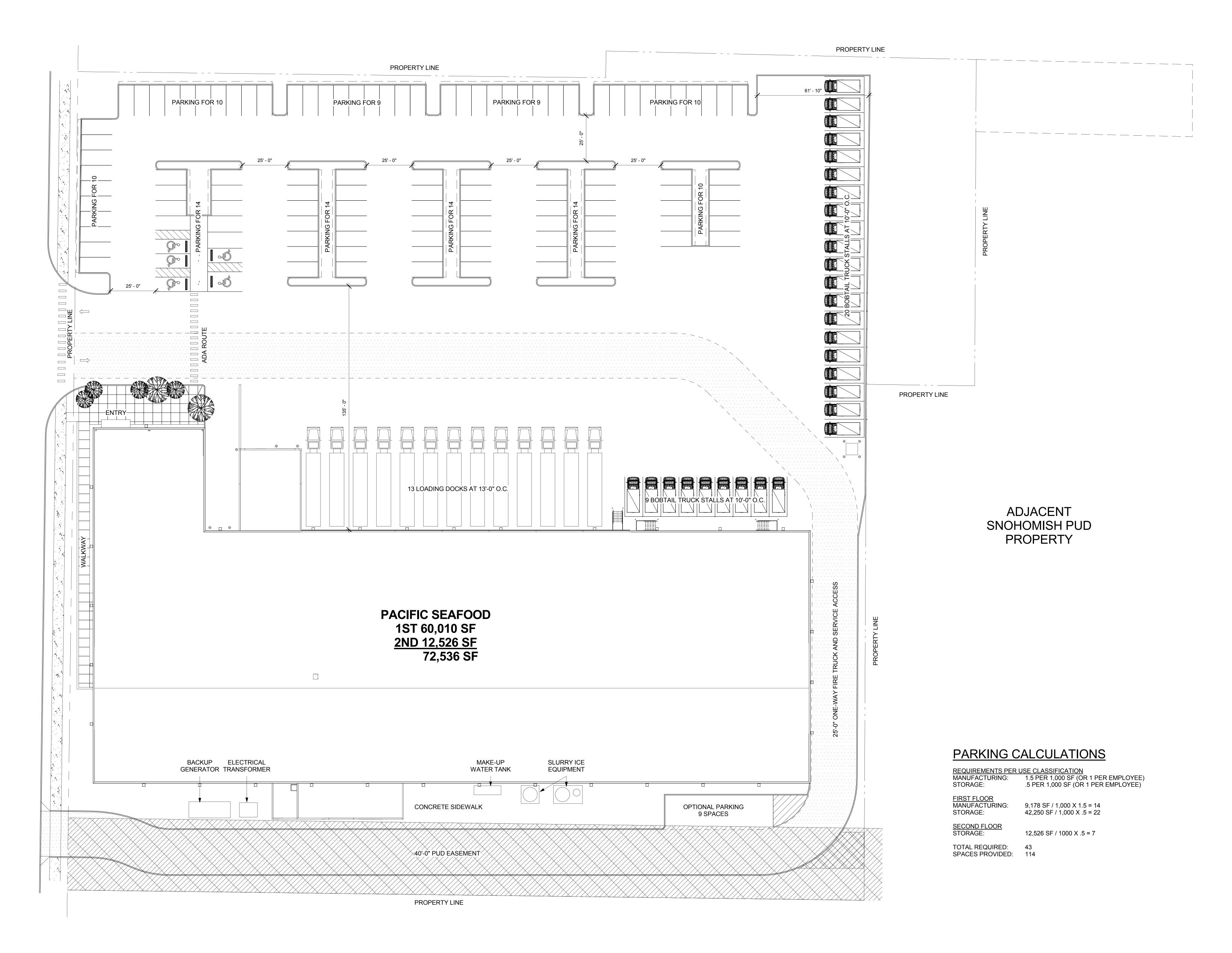
Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
General	Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running	Top slab is free of holes and cracks.
		into basin). Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
		Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.

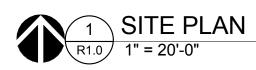
No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

No. 6 - Debris Barriers (e.g., Trash Racks)

Maintenance Components	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
Metal	Damaged/ Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
		Bars are missing or entire barrier missing.	Bars in place according to design.
		Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
	Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe	Barrier firmly attached to pipe


Biofiltration Swale


- Inspect biofilters at least once every 6 months, preferably during storm events, and also after storm events of > 0.5 inch rainfall/ 24 hours. Maintain adequate grass growth and eliminate bare spots.
- Mow grasses, if needed for good growth {typically maintain at 4 9 inches and not below design flow level (King County, 1998)}.
- Remove sediment as needed at head of the swale if grass growth is inhibited in greater than 10 percent of the swale, or if the sediment is blocking the distribution and entry of the water (King County, 1998).
- Remove leaves, litter, and oily materials, and re-seed or resod, and regrade, as needed. Clean curb cuts and level spreaders as needed.

Prevent scouring and soil erosion in the biofilter. If flow channeling occurs, regrade and reseed the biofilter, as necessary.

Maintain access to biofilter inlet, outlet, and to mowing (Figure 9.4.8)

• If a swale is equipped with underdrains, vehicular traffic on the swale bottom (other than grass mowing equipment) should be avoided to prevent damage to the drainpipes.

Architecture - Interiors Planning - Engineering

Project

PACIFIC SEAFOOD DISTRIBUTION FACILITY 8007 44TH AVE WEST MUKILTEO, WA

Mechanical/Electrical/Plumbing SAZAN Group 111 SW 5th Ave., Suite 2120 Portland, OR 97204

Civil Navix Engineering 11400 SE 8TH St. Suite 345 Bellvue, WA 98004

Refrigeration System Design **PermaCold** 2945 NE Argyle Portland, OR 97211

C MACKENZIE ALL RIGHTS RESERVED THESE DRAWINGS ARE THE PROPERTY OF MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION **Revision Schedule** Revision Delta Issue Date

DRAWN BY: DIN

CHECKED BY: PDK

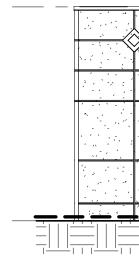
SHEET

^{JOB NO.} **2160231.00**

d\231-Pacific Seafood-L.rvt 9/16/2016 10:47:56 AM 1" = 20'-0"

4 WEST ELEVATION R1.1 1/16" = 1'-0"

		Ţ			-> `- - ^ ^ (``;	/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/ -/		-`````					- - - - - - -
	· - ^		- /`` / -` · ./ ⁻ -			, , , , , , , , , , , , , , , , , , ,			2				
			· · · ·	· · ·				-		-	- "、	1 4 1 4 - 7 4 <u>1</u> 4 <u>1</u> 8 - 8 - 4	- - - -
ļ		· · · · · ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						- x x


3 SOUTH ELEVATION R1.1 1/16" = 1'-0"

· · · · · · · · · · · · · · · · · · ·	35' - 8" 🗸
	AVERAGE GRADE:
	579.7

2 NORTH ELEVATION R1.1 1/16" = 1'-0"

<u></u>															
	₽											Y	■ , , , , , , , , , , , , , , , , , , ,		
———— AV										$\left \begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\left[\begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{$					
		, , , , , , , , , , , , , , , , ,	> - <											- <u>, </u>	ξ 4 - ξ μ. β Δ ξ. - τ (μ.) ^τ α (^τ α) (τ
FIRST															
					1 · · · · · ·	· · · · · ·	. ,	Y							
				<u>····</u> I I I <u>····</u> I	<u>- </u>										

	- <u>T.O. PARAPET</u> 35' - 8"
	35' - 8" 🛡
,	
-	AVERAGE GRADE:
, , ,	579.7
-	FIRST FLOOR 0"

Architecture - Interiors Planning - Engineering

Project

PACIFIC SEAFOOD DISTRIBUTION FACILITY 8007 44TH AVE WEST MUKILTEO, WA

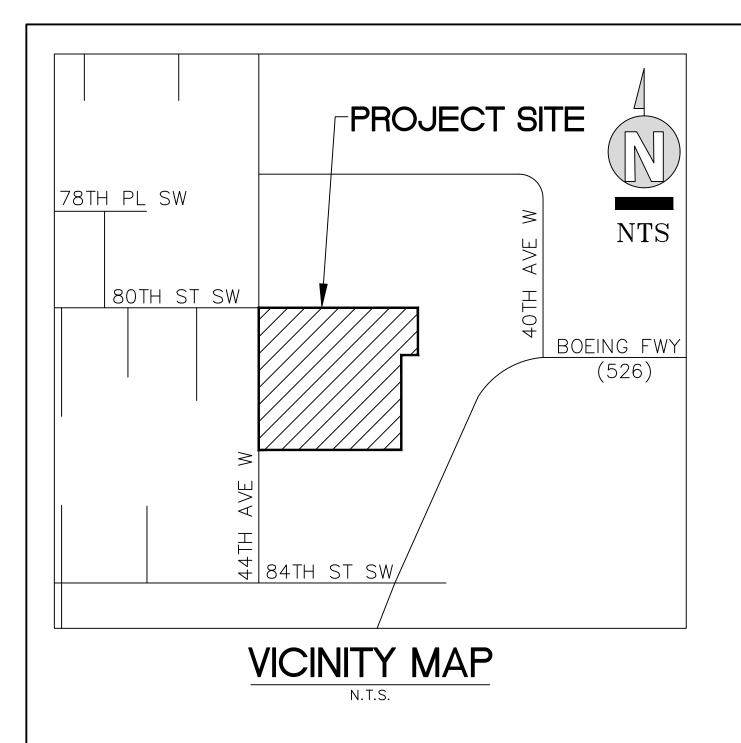
Mechanical/Electrical/Plumbing SAZAN Group 111 SW 5th Ave., Suite 2120 Portland, OR 97204

Civil **Navix Engineering** 11400 SE 8TH St. Suite 345 Bellvue, WA 98004

Refrigeration System Design **PermaCold** 2945 NE Argyle Portland, OR 97211

© MACKENZIE ALL RIGHTS RESERVED THESE DRAWINGS ARE THE PROPERTY OF MACKENZIE AND ARE NOT TO BE USED OR REPRODUCED IN ANY MANNER, WITHOUT PRIOR WRITTEN PERMISSION **Revision Schedule** Revision Delta Issue Date

SHEET TITLE: BUILDING ELEVATIONS


DRAWN BY: DIN

CHECKED BY: PDK

SHEET

JOB NO. **2160231.00**

APPLICANT

PACIFIC SEAFOOD 16797 SE 130TH AVENUE CLACKAMAS, OR 97015 T: (360)-757-4094 F: (360)-757-4005 CONTACT: JOHN DAILEY

CONSULTANTS

NAVIX ENGINEERING, INC. 11400 SE 8TH STREET SUITE 345 BELLEVUE, WA 98004 T: (425) 453-9501 CONTÀCT: JOE TAFLIN, P.E.

ARCHITECT MACKENZIE 1515 SE WATER AVENUE SUITE 100 PORTLAND, OR 97214 T: (503) 224-960 CONTACT: DANIEL NOVICK, AIA

SURVEYOR: TERRANE, INC. (FORMERLY GEODIMENSIONS INC.) 10801 MAIN STREET SUITE 102 BELLEVUE, WA 98004 T: (425)-458-448

DATUM/BASIS OF BEARINGS

PER BOUNDARY LINE ADJUSTMENT REC. NO. 20120295003, THE CENTERLINE OF 44TH AVE W BEARS NO0°44'17"E BETWEEN MONUMENTS FOUND.

NAVD 88 PER GPS OBSERVATIONS

SNOHOMISH COUNTY BENCHMARK PT. 186=CAD# 3"X3" CONC POST W/LEAD & TACK @ CL PI INTX 44TH AVE W & 76TH ST SW, DN 0.5'.

ELEVATION: 556.508 (PUBLISHED) 556.70' (MEASURED)

TBM #1: SSMH RIM NEAR PROPERTY NORTH LINE OF SITE, ELEV=575.28'

TBM #2: PK NAIL IN CONC WALK, S. OF WHEELCHAIR RAMP ON WEST SIDE OF 44TH AVE W AT INTX 80TH ST SW, ELEV=581.84

LEGAL DESCRIPTION

PARCEL A: LOT 1 OF CITY OF MUKILTEO BOUNDARY LINE ADJUSTMENT RECORDED UNDER AUDITOR'S FILE NO. 201210290638, AND SURVEY THEREOF RECORDED UNDER AUDITOR'S FILE NO. 201210295003, RECORDS OF SNOHOMISH COUNTY, WASHINGTON, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS: LOT 1 OF CITY OF MUKILTEO SHORT PLAT RECORDED UNDER AUDITOR'S FILE NO. 8304080271, RECORDS OF SNOHOMISH COUNTY, WASHINGTON; EXCEPT THE SOUTH 15 FEET THEREOF, BEING A PORTION OF LOT 98 WEST & WHEELERS SEAVIEW FIVE ACRE TRACTS, ACCORDING TO THE PLAT THEREOF RECORDED IN VOLUME 7 OF PLATS, PAGE(S) 12 AND 13, RECORDS OF SNOHOMISH COUNTY, WASHINGTON.

PARCEL B: LOT 2 OF CITY OF MUKILTEO BOUNDARY LINE ADJUSTMENT RECORDED UNDER AUDITOR'S FILE NO. 201212200420, AND SURVEY THEREOF RECORDED UNDER AUDITOR'S FILE NO. 201212205001, RECORDS OF SNOHOMISH COUNTY, WASHINGTON,

BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS: LOT 2 OF CITY OF MUKILTEO BOUNDARY LINE ADJUSTMENT RECORDED UNDER AUDITOR'S FILE NO. 201210290638, AND SURVEY THEREOF RECORDED UNDER AUDITOR'S FILE NO. 201210295003 RECORDS OF SNOHOMISH COUNTY. WASHINGTON;

TOGETHER WITH THAT PORTION OF PARCEL A OF CITY OF MUKILTEO BOUNDARY LINE ADJUSTMENT RECORDED UNDER AUDITOR'S FILE NO. 201210290639, AND SURVEY THEREOF RECORDED UNDER AUDITOR'S FILE NO. 201210295003, RECORDS OF SNOHOMISH COUNTY, WASHINGTON DESCRIBED AS FOLLOWS: COMMENCING AT THE MOST SOUTHWEST CORNER OF SAID PARCEL A; THENCE NORTH 00°37'47" EAST, A DISTANCE OF 290.21 FEET; THENCE NORTH 88°37'43" WEST, A DISTANCE OF 10.27 FEET; THENCE NORTH 00°42'45" EAST, A DISTANCE OF 148.32 FEET; THENCE SOUTH 88°47'17" EAST, A DISTANCE OF 175.47 FEET; THENCE SOUTH 00°15'55" WEST, A DISTANCE OF 150.85 FEET; THENCE NORTH 89°15'43" WEST, A DISTANCE OF 60.02 FEET; THENCE SOUTH 00"15'55" WEST, A DISTANCE OF 286.00 FEET; THENCE NORTH 89"15'43" WEST, A DISTANCE OF 108.16 FEET TO THE POINT OF BEGINNING; BEING A PORTION OF LOTS 97 AND 98, WEST & WHEELERS SEAVIEW FIVE ACRE

TRACTS, ACCORDING TO THE PLAT THEREOF RECORDED IN VOLUME 7 OF PLATS, PAGE(S) 12 AND 13, RECORDS OF SNOHOMISH COUNTY, WASHINGTON. TOGETHER WITH THAT PORTION OF VACATED 80TH STREET SOUTHWEST ADJACENT

THERETO, AS VACATED BY CITY OF MUKILTEO ORDINANCE NO. 1238, RECORDED UNDER AUDITOR'S FILE NO. 201302111033.

PARCEL C: LOT 1, SNOHOMISH COUNTY SHORT PLAT NO. SP128(4-76) RECORDED UNDER RECORDING NO. 7605100281, RECORDS OF SNOHOMISH COUNTY, WASHINGTON, BEING A PORTION OF THE WEST HALF OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 28 NORTH, RANGE 4 EAST OF THE WILLAMETTE MERIDIAN.

PARCEL D: LOT 2, SNOHOMISH COUNTY SHORT PLAT NO. SP128(4-76) RECORDED UNDER RECORDING NO. 7605100281, RECORDS OF SNOHOMISH COUNTY, WASHINGTON, BEING A PORTION OF THE WEST HALF OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 28 NORTH, RANGE 4 EAST OF THE WILLAMETTE MERIDIAN.

PARCEL E: LOT 3, SNOHOMISH COUNTY SHORT PLAT NO. SP128(4-76) RECORDED UNDER RECORDING NO. 7605100281, RECORDS OF SNOHOMISH COUNTY, WASHINGTON, BEING A PORTION OF THE WEST HALF OF THE SOUTHWEST QUARTER OF SECTION 10, TOWNSHIP 28 NORTH, RANGE 4 EAST OF THE WILLAMETTE MERIDIAN.

ALL SITUATE IN THE COUNTY OF SNOHOMISH, STATE OF WASHINGTON.

PACIFIC SEAFOOD CIVIL PLANS 8007 44TH AVE W MUKILTEO, WA 98274 SW 1/4 OF SECTION 10, TOWNSHIP 28 NORTH, RANGE 4 EAST, W.M.

PROJECT DATA

PARCEL NUMBERS) =

EXISTING USE PROPOSED USE ZONING DESIGNATION TOTAL PROPERTY AREA PROPOSED ROW DEDICATION PROPOSED PROPERTY AREA

EXISTING LAND COVER AREAS **IMPERVIOUS** PERVIOUS

PROPOSED LAND COVER AREAS: **IMPERVIOUS** NPGIS PGIS PERVIOUS:

0061160000980 0061160000970 28041000301800 28041000303000 28041000301700

- = PI (PLANNED INDUSTRIAL) = PI (PLANNED INDUSTRIAL) = PI (PLANNED INDUSTRIAL) $= 217,099 \pm SF (4.98 ACRES)$ = 4,537 SF
- = 212,562 SF (4.88 ACRES)

= 25,688 SF = 186,875 SF

= 181,210 SF (85% OF TOTAL SF) = 62,290 SF (29% OF TOTAL SF) = 118,920 SF (56% OF TOTAL SF) = 31,352 SF (15% OF TOTAL SF)

EARTHWORK NOTE

IT IS ANTICIPATED. THAT APPROXIMATELY 5,000 CUBIC YARDS OF CUT/FILL WILL BE MOVED ON SITE FOR THIS PROJECT.

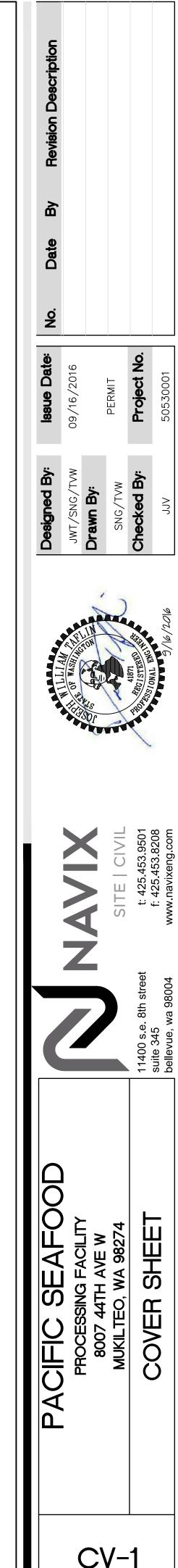
PLEASE NOTE THAT THIS NUMBER IS TO BE USED FOR PERMITTING AND AGENCY USE ONLY AND IS NOT AN ACTUAL QUANTITY TO BE USED FOR BIDDING, COST ESTIMATING, OR OTHER PURPOSES.

ON-SITE SHEET INDEX

CV-1	COVER SHEET
CV-2	CIVIL GENERAL NOTES
D-2.0	T.E.S.C. PLAN
D-2.1	T.E.S.C. NOTES AND DETAILS
C-1.0	SITE AND PAVING IMPROVEMENTS
C-1.1	SITE NOTES AND DETAILS
C-2.0	DRAINAGE PLAN
C-2.1	FINISHED GRADING PLAN
C-2.2	DRAINAGE NOTES AND DETAILS
C-2.3	DRAINAGE NOTES AND DETAILS
C-2.4	DRAINAGE NOTES AND DETAILS
C-3.0	WATER PLAN
C-3.1	SEWER PLAN
C-3.2	WATER NOTES AND DETAILS
C-3.3	WATER DETAILS
C-3.4	SEWER NOTES AND DETAILS
C-3.5	SEWER DETAILS

OFF-SITE SHEET INDEX

- CR-1.0 ROADWAY PLAN AND PROFILE
- ROADWAY NOTES AND DETAILS CR-1.1
- ROADWAY DETAILS ROADWAY DETAILS
- CH-1.0 CHANNELIZATION PLAN
- CHANNELIZATION DETAILS CH-1.1


GENERAL NOTES

SITE WORK FOR THIS PROJECT SHALL MEET OR EXCEED THE PROJECT SPECIFICATIONS, THE CITY OF MUKILTEO STANDARD SPECIFICATIONS, AND THE A.P.W.A. STANDARDS WHICH ARE HEREBY REFERENCED AS PART OF THESE PLANS.

THE DESIGN SHOWN IS BASED UPON THE ENGINEER'S UNDERSTANDING OF THE EXISTING CONDITIONS. THE PLAN DOES NOT REPRESENT A DETAILED FIELD SURVEY. THE EXISTING CONDITIONS SHOWN ON THIS PLAN SHEET ARE BASED UPON THE SURVEY PREPARED BY TERRANE, INC. (FORMERLY GEODIMENSIONS INC.), DATED 02/12/16. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING FIELD CONDITIONS PRIOR TO BIDDING THE PROPOSED SITEWORK IMPROVEMENTS. IF CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTIFY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITEWORK WHICH WOULD BE AFFECTED. IF CONTRACTOR DOES NOT ACCEPT EXISTING SURVEY, INCLUDING TOPOGRAPHY AS SHOWN ON THE PLANS, WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS OWN EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER FOR REVIEW.

CAUTION - NOTICE TO CONTRACTOR

THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES AND, WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANY AT LEAST 48 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THESE PLANS.

Know what's **below**. Call before you dig.

WATER SYSTEM INSTALLATION NOTES

PRIOR TO ANY CONSTRUCTION ACTIVITY, THE DEVELOPER SHALL ARRANGE A PRE-CONSTRUCTION CONFERENCE WITH THE MUKILTEO WATER AND WASTEWATER DISTRICT. THE DEVELOPER, CONTRACTOR AND PROPOSED ON-SITE SUPERVISORS SHALL ATTEND.

2. ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH THE LATEST REVISION, INCLUDING ADDENDA AND UPDATES, OF THE MUKILTEO WATER AND WASTEWATER DISTRICT DEVELOPER STANDARDS. CONTRACTOR TO HAVE MUKILTEO WATER AND WASTEWATER DISTRICT STANDARDS ON JOB SITE.

3. NO DISTRICT INSPECTIONS WILL TAKE PLACE AND THE JOB WILL BE SHUT DOWN UNLESS AN APPROVED AND DISTRICT SIGNED COPY OF THESE PLANS ARE ON THE JOB SITE AT ALL TIMES CONSTRUCTION IS IN PROGRESS.

4. ALL WATER SYSTEM IMPROVEMENTS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THESE APPROVED PLANS. ANY DEVIATION FROM THE PLANS WILL REQUIRE APPROVAL FROM THE OWNER, ENGINEER, DISTRICT AND APPROPRIATE PUBLIC AGENCIES.

5. NOTIFY THE DISTRICT 72 HOURS (3 WORKING DAYS) PRIOR TO BEGINNING CONSTRUCTION AND FOR ANY RESTARTS OF WORK.

6. THE DISTRICT SHALL BE NOTIFIED THREE WORKING DAYS PRIOR TO THE TIME THE DEVELOPER WOULD LIKE TO CONNECT TO EXISTING MAINS OR FOR INSTALLATION OF TAPPING TEES. THE CONNECTION SHALL BE DONE IN ACCORDANCE WITH DISTRICT REQUIREMENTS. CONNECTIONS TO TAKE PLACE TUESDAYS THROUGH THURSDAYS ONLY. DEVELOPER SHALL NOT OPERATE ANY DISTRICT VALVES; THESE WILL BE OPERATED BY WATER DISTRICT PERSONNEL ONLY.

7. FOR AID IN UTILITY LOCATION, CALL 1-800-424-5555, A MINIMUM OF 48 HOURS (2 WORKING PRIOR TO BEGINNING OF CONSTRUCTION. EXISTING UTILITIES, WHETHER SHOWN OR NOT, SHALL BE LOCATED PRIOR TO CONSTRUCTION, SO AS TO AVOID DAMAGE OR DISTURBANCE, AND THE DEVELOPER SHALL ASSUME ALL RESPONSIBILITY AND COSTS CONNECTED THEREWITH TO PROTECT. MAINTAIN AND REPAIR. WHERE NECESSARY.

8. WATER LINE CONSTRUCTION WITHIN THE PROPOSED DEVELOPMENT SHALL NOT COMMENCE UNTIL THE STREET HAS BEEN BROUGHT TO SUB-GRADE, MEETING MUKILTEO WATER DISTRICT APPROVAL.

9. WATER MAIN SHALL BE FIELD STAKED PRIOR TO CONSTRUCTION, WITH 25-FOOT STAKES ON LOT CORNER STAKES SHALL ALSO BE IN PLACE PRIOR TO CONSTRUCTION.

10. PIPE SHALL BE DUCTILE IRON, AWWA CLASS 52 THICKNESS, WITH RUBBER GASKETS, PUSHON TYPE, OR MECHANICAL JOINT, MEETING AWWA SPECIFICATIONS. FITTINGS SHALL BE AWWA, CEMENT LINED, DUCTILE IRON, AND EITHER MECHANICAL JOINT OR FLANGED, AS INDICATED HEREIN. ALL PIPE TO BE PURCHASED AND INSTALLED AS A PART OF THE DEVELOPERS WATER SYSTEM SHALL BE DELIVERED TO THE JOB SITE WITH WATER TIGHT WRAPPING OR PIPE PLUGS. PLUGS AND/OR WRAPPING SHALL REMAIN IN PLACE UNTIL THE PIPE IS INSTALLED IN THE TRENCH.

11. UNLESS OTHERWISE SPECIFIED VALVES 12 INCH AND SMALLER SHALL BE DUCTILE IRON RESILIENT SEATED GATE VALVES: ACCEPTABLE VALVES ARE MUELLER, CLOW, M&H, U.S. PIPE AND AMERICAN FLOW CONTROL, SERIES 2500. VALVES LARGER THAN 12 INCHES SHALL BE DUCTILE IRON BUTTERFLY VALVES; ACCEPTABLE VALVES ARE PRATT GROUNDHOG AND DRESSER 450.

12. ALL BOLTS ON WATER WORKS FITTINGS SHALL BE COATED WITH ARMITE ANTI-SEIZE COMPOUND NO. 609, OR EQUAL, PRIOR TO INSTALLATION. ALL WATER WORKS FITTINGS AND BOLTED ASSEMBLIES SHALL BE COMPLETELY COVERED WITH VISQUEEN PLASTIC, 4 MIL. THE END OF THE PLASTIC SHALL BE TAPED TO SECURE THEM TO THE PIPE.

13. HYDRANTS SHALL BE MUELLER CENTURION A-423, CLOW MEDALLION, OR DRESSER RELIANT 929 MEETING AWWA SPECIFICATIONS. HYDRANTS SHALL BE FURNISHED WITH THREADED OUTLETS, MEETING FIRE DISTRICT/DEPARTMENT STANDARDS. BOTH THRUST BLOCKING AND MEGA LUGS RESTRAINTS ARE REQUIRED ON EACH HYDRANT INSTALLATION. HYDRANTS WITHIN THE CITY OF MUKILTEO FIRE SERVICE AREA AND FIRE DISTRICT #1

SHALL BE EQUIPPED WITH 4-INCH STORZ ADAPTERS; ALL OTHER HYDRANTS SHALL UTILIZE A 5-INCH STORZ ADAPTER. ALL HYDRANTS SHALL HAVE A $4-\frac{1}{2}$ -INCH NST THREADS ON PUMPER PORT.

14. PROVIDE THRUST BLOCKING AND/OR RESTRAINED JOINTS AT ALL FITTINGS AND BENDS AND UPTHRUST FITTINGS, IN ACCORDANCE WITH DISTRICT STANDARDS, CONDITIONS AND SPECIFICATIONS.

15. ALL NEW CONNECTIONS TO THE EXISTING WATER SYSTEM SHALL BE IN STRICT CONFORMANCE WITH THE APPROPRIATE SUBSECTIONS OF THE SPECIFICATIONS OF THE DISTRICT. NO CONNECTION SHALL BE MADE BETWEEN THE NEW MAIN AND THE EXISTING MAINS UNTIL THE NEW PIPING HAS BEEN FLUSHED, DISINFECTED, TESTED AND RECEIVED SATISFACTORY BACTERIOLOGICAL TEST RESULTS.

16. INDIVIDUAL WATER SERVICES TO THE PROPERTY LINE SHALL BE 1"DIAMETER MINIMUM SIZE AND BE INSTALLED WITH 36-INCH MINIMUM COVER.

17. RESIDENTIAL FIRE SPRINKLER SYSTEMS SHALL HAVE A MINIMUM 1-INCH METER/SERVICE. BACKFLOW PREVENTION ASSEMBLIES SHALL BE INSTALLED ON ALL RESIDENTIAL FIRE SPRINKLER SYSTEMS AND LOCATED IMMEDIATELY BEHIND THE WATER METER/SERVICE ON THE PROPERTY SIDE.

18. FIRE LINE SERVICES SHALL HAVE A DOUBLE CHECK DETECTOR BACKFLOW PREVENTION ASSEMBLY INSTALLED IN A UTILITY VAULT AT THE ROW/PROPERTY LINE WITH A 6-INCH PVC GRAVITY DRAIN TO STORM. FIRE LINE SERVICE SHALL TERMINATE, IN THE STRUCTURE TO BE SERVED, WITH THE DISTRICT'S RISER DETAIL.

19. ALL COMMERCIAL, MULTI-FAMILY, INDUSTRIAL AND IRRIGATION SERVICES SHALL INCLUDE A DOH APPROVED BACKFLOW PREVENTION ASSEMBLY LOCATED IMMEDIATELY BEHIND AND ON THE PROPERTY SIDE OF THE WATER METER. ALTERNATE LOCATIONS MAY BE ACCEPTABLE UPON APPROVAL BY THE DISTRICT. STRUCTURES REQUIRING FIRE SPRINKLER SYSTEM SHALL HAVE AT LEAST ONE BACKFLOW PREVENTION ASSEMBLY PER EACH STRUCTURE, PROTECTING THE POTABLE WATER SYSTEM FROM THE FIRE SYSTEM. THE BACKFLOW PREVENTION ASSEMBLY SHALL BE LOCATED IN A FLOOD PROOF VAULT OR SERVICE BOX, DEPENDING ON SIZE, OUTSIDE THE STRUCTURE IN A LOCATION APPROVED BY THE DISTRICT.

20. WHERE ROAD GRADES ARE ESTABLISHED. PROVIDE A MINIMUM OF 48-INCH COVER OVER 12 INCH OR LARGER WATER MAINS. AND PROVIDE A MINIMUM OF 42-INCH COVER OVER 8-INCH MAINS: OR ADDITIONAL DEPTH AS REQUIRED TO MISS OTHER UTILITIES.

21. WATER MAINS CONSTRUCTED WITHIN EASEMENTS OR PRIVATE ROADS SHALL BE INSTALLED WITH POLYETHYLENE ENCASEMENT, RESTRAINED JOINTS AND WITH A 5'-O" MINIMUM COVER. DURING BACKFILL OPERATIONS, FURNISH AND INSTALL 3-INCH-WIDE METALLIC MARKER TAPE WITH 3 FEET OF COVER OVER WATER MAIN.

22. MINIMUM RADIUS FOR 12 INCH AND SMALLER PIPELINES CONSTRUCTED ON CURVES (4 DEGREE DEFLECTION PER JOINT) IS 258 FEET.

23. COMPACTION: ALL TRENCH BACKFILL AND ROADWAY EMBANKMENT SHALL BE COMPACTED TO 95% OF MODIFIED PROCTOR DRY MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D1557, EXCEPT THE TOP 6 INCHES IN PAVED AREAS, WHICH SHALL BE 100%.

24. CONSTRUCTION INSPECTION WILL BE DONE BY MUKILTEO WATER AND WASTEWATER DISTRICT AND/OR THEIR DESIGNATED ENGINEER. NO UTILITY FACILITIES WILL BE ACCEPTED BY THE DISTRICT IF PROPER INSPECTIONS HAVE NOT BEEN COMPLETED.

25. THE WATER MAIN CONSTRUCTION PHASE WILL NOT BE CONSIDERED COMPLETE UNTIL THE INSTALLATION IS ACCEPTABLE TO THE DISTRICT INCLUDING A SATISFACTORY HYDROSTATIC PRESSURE TEST, A SATISFACTORY DISINFECTION TEST, SATISFACTORY FLOW OF SERVICE LINES, AND COMPLETION OF ALL ITEMS ON THE INSPECTOR'S PUNCH LIST.

26. WATER SERVICE IS AVAILABLE ONLY AFTER TRANSFER OF OWNERSHIP TO THE DISTRICT AND AFTER PAYMENT OF ALL CURRENT APPLICABLE FEES.

SEWER SYSTEM INSTALLATION NOTES

1. PRIOR TO ANY CONSTRUCTION ACTIVITY, THE DEVELOPER SHALL ARRANGE A PRE-CONSTRUCTION CONFERENCE WITH THE MUKILTEO WATER AND WASTEWATER DISTRICT. THE DEVELOPER, CONTRACTOR AND PROPOSED ON-SITE SUPERVISOR SHALL ATTEND.

2. ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH THE LATEST REVISION, INCLUDING ADDENDA AND UPDATES, OF THE MUKILTEO WATER AND WASTEWATER DISTRICT DEVELOPER STANDARDS. CONTRACTOR TO HAVE MUKILTEO WATER AND WASTEWATER DISTRICT STANDARDS ON JOB SITE AT ALL TIMES WHILE CONSTRUCTION IS IN PROGRESS.

3. A DISTRICT APPROVED SIGNED COPY OF THE PLANS MUST BE ON THE JOB SITE WHENEVER CONSTRUCTION IS IN PROGRESS.

4. ALL WORK AND MATERIAL SHALL BE IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND SPECIFICATIONS OF THE DISTRICT, THE PROJECT SPECIFICATIONS, AND THE MOST RECENT EDITION OF THE APWA STANDARDS AND SPECIFICATIONS. 5. WORK SHALL NOT COMMENCE UNTIL APPROVAL IS RECEIVED FROM THE STATE DEPARTMENT OF ECOLOGY, UNLESS THE

REVIEW AND APPROVAL IS WAIVED BY ECOLOGY. 6. FRONT PROPERTY CORNERS SHALL BE SET BY A LAND SURVEYOR LICENSED IN THE STATE OF WASHINGTON PRIOR TO

THE START OF CONSTRUCTION.

7. NOTIFY THE DISTRICT 72 HOURS (3 WORKING DAYS) PRIOR TO BEGINNING CONSTRUCTION AND FOR ANY RESTARTS OF WORK.

8. FOR AID IN UTILITY LOCATION, CALL 1-800-424-555, A MINIMUM OF 48 HOURS (2 WORKING PRIOR TO BEGINNING OF CONSTRUCTION. EXISTING UTILITIES, WHETHER SHOWN OR NOT, SHALL BE LOCATED PRIOR TO CONSTRUCTION, SO AS TO AVOID DAMAGE OR DISTURBANCE, AND THE DEVELOPER SHALL ASSUME ALL RESPONSIBILITY AND COSTS CONNECTED THEREWITH TO PROTECT. MAINTAIN AND REPAIR. WHERE NECESSARY.

9. PIPE LENGTHS, MANHOLE DEPTHS, ETC., AS SHOWN ARE APPROXIMATE. DEVELOPER IS RESPONSIBLE FOR SUPPLYING PROPER QUANTITIES OF MATERIALS.

10. PROVIDE THE DISTRICT'S INSPECTOR WITH A COPY OF ALL CUT SHEETS PRIOR TO CONSTRUCTION.

11. PERMANENT ACCESS FOR DISTRICT SERVICE VEHICLES SHALL BE PROVIDED AT ALL MANHOLES. MANHOLES SHALL BE CONSTRUCTED AS PER DISTRICT STANDARD DETAILS, INCLUDING CONSTRUCTION OF CHANNELS, WHERE INDICATED, PROVIDE KNOCK-OUTS AND CHANNELIZATION FOR SIDE SEWER OR FUTURE MAINLINE EXTENSIONS: AND FOR PVC PIPE, PROVIDE A WATERTIGHT FLEXIBLE RUBBER BOOT OR HEAVY DUTY SAND COLLAR. PROVIDE LOCKING LIDS FOR MANHOLE COVERS.

12. CONNECTION TO EXISTING MAIN SHALL BE DONE SO AS TO PREVENT ANY FOREIGN MATERIALS FROM ENTERING EXISTING SEWERS. EXISTING PIPE IN SADDLE MANHOLE INSTALLATIONS SHALL NOT BE CUT OR REMOVED UNTIL INSTRUCTED TO DO SO BY THE DISTRICT.

13. CONNECTION TO EXISTING MANHOLES SHALL BE MADE BY UTILIZATION OF A CONCRETE COREDRILLING MACHINE OF ADEQUATE DIAMETER TO GROUT IN PLACE AN ADAPTER IF PVC SEWER LINES ARE INSTALLED. ALIGN CORE-DRILLING MACHINE TO PROVIDE MINIMUM OF 0.10-FOOT DROP ACROSS THE MANHOLE.

14. PVC PIPE SHALL BE SDR-35 ASTM D3034 FURNISHED IN 13-FOOT MAXIMUM LENGTHS AND SHALL BE FULLY ENCASED IN PEA GRAVEL (OR CRUSHED ROCK, BASE COURSE, IF INSTALLED WITHIN THE CITY LIMITS OF EVERETT) EXTENDING FROM 4 INCHES BELOW TO 12 INCHES ABOVE PIPE BARREL.

15. DI SANITARY SEWER PIPE SHALL CONFORM TO AWWA C151 AND SHALL BE POLYETHYLENE OR EPOXY LINED, RESTRAINED JOINT. THE DI PIPE SHALL BE CLASS 52, UNLESS OTHERWISE APPROVED.

16. SEWERS TO BE LOCATED BELOW POTABLE WATER LINES, WITH 18-INCHES VERTICAL SEPARATION AND WITH A MINIMUM OF 10-FOOT HORIZONTAL SEPARATION FROM PARALLEL WATER LINES. CROSSING ANGLES SHALL BE 45 DEG. OR GREATER. UNUSUAL OR SPECIAL CONDITIONS ARE ADDRESSED IN ACCORDANCE WITH THE DEPARTMENT ECOLOGY AND DEPARTMENT OF HEALTH CRITERIA.

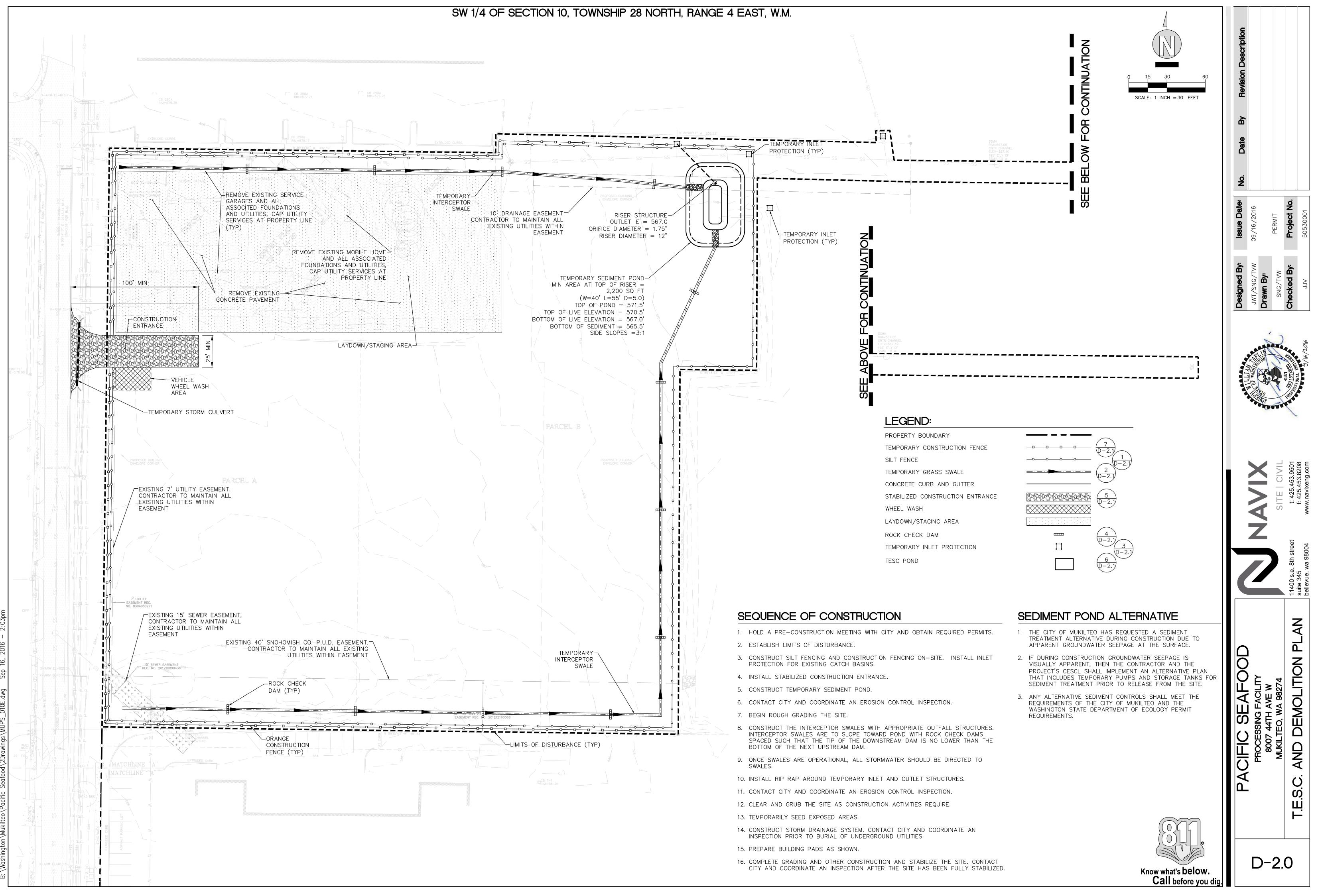
17. SIDE SEWER SHALL BE A MINIMUM OF 6 INCHES IN DIAMETER AND SHALL HAVE A MINIMUM SLOPE OF 2%. SIDE SEWER SHALL INCLUDE TWO 6-INCH TEES AT THE PROPERTY LINE: ONE WITHIN THE PUBLIC RIGHT-OF-WAY AND ONE WITHIN THE PRIVATE PROPERTY. SEE DETAIL.

18. ALL SEWER LINES SHALL BE CLEANED AND TESTED IN ACCORDANCE WITH DISTRICT STANDARDS AND SPECIFICATIONS.

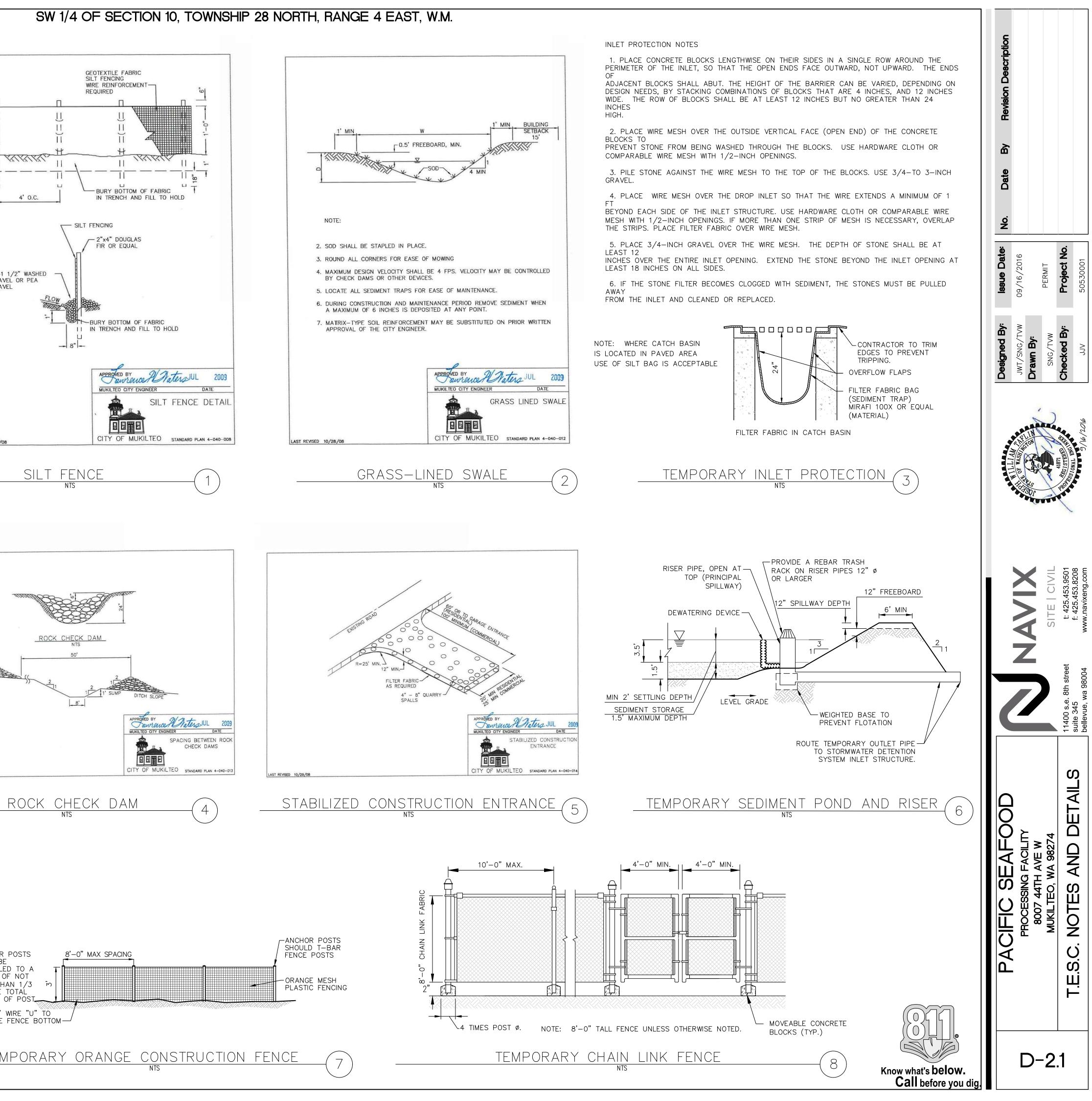
19. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING AND/OR REPAIRING ASPHALT AND GRAVEL SURFACE DISTURBED AS A RESULT OF THIS CONSTRUCTION UNTIL THEY ARE ACCEPTED BY THE PUBLIC WORKS DEPARTMENT OF THE CITY AND/OR COUNTY.

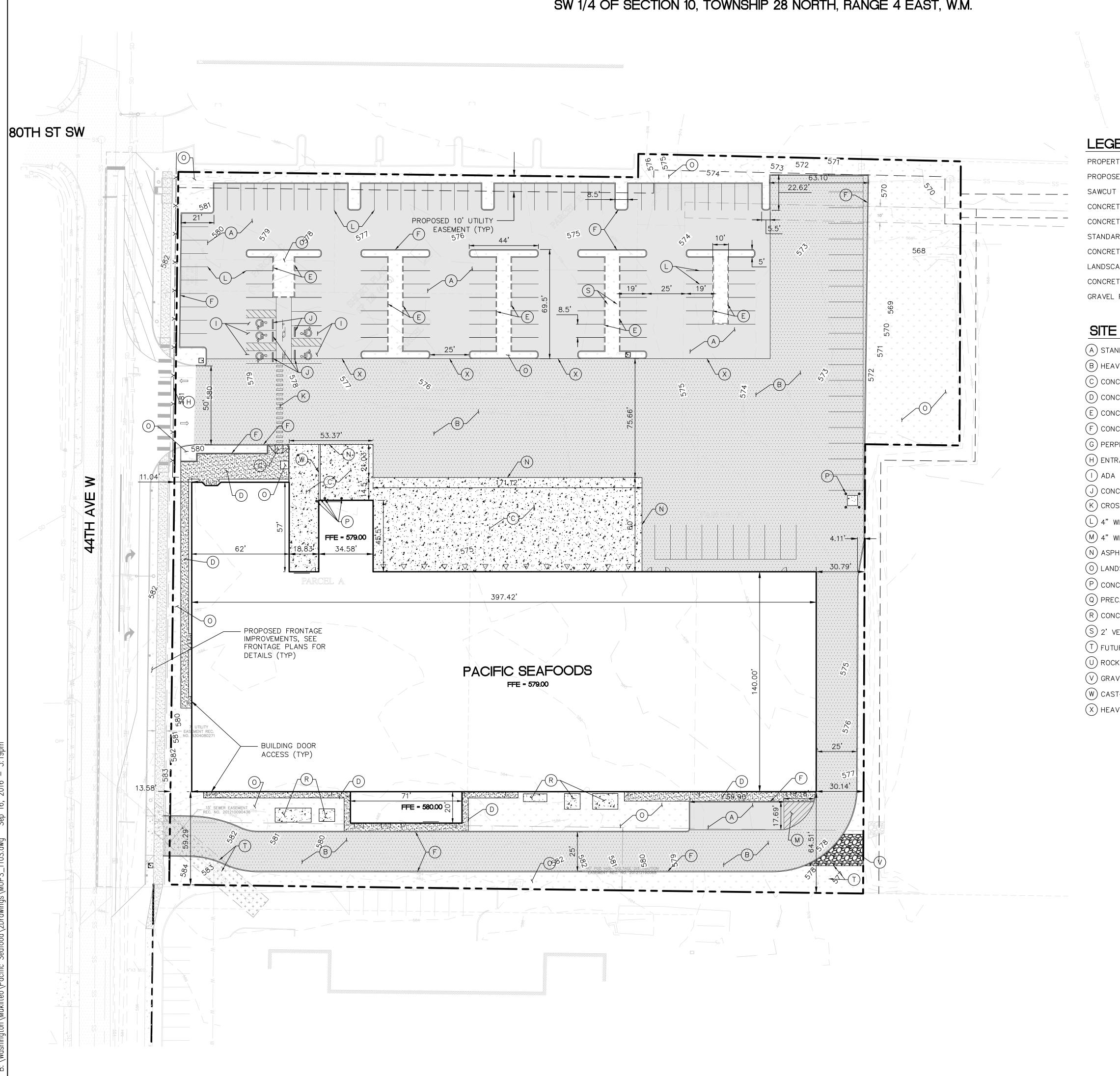
20. COMPACTION: ALL TRENCH BACKFILL AND ROADWAY EMBANKMENT SHALL BE COMPACTED TO 95% OF MODIFIED PROCTOR DRY MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D1557, EXCEPT THE TOP 6 INCHES IN PAVED AREAS WHICH SHALL BE 100%.

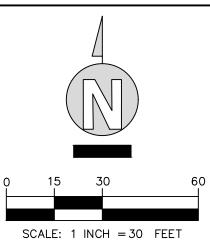
21. MANHOLE COVERS LOCATED IN ASPHALT AREAS SHALL BE ADJUSTED TO FINISH GRADE PRIOR TO PAVING.


22. NO UTILITY FACILITIES WILL BE ACCEPTED BY THE DISTRICT IF PROPER INSPECTIONS HAVE NOT BEEN COMPLETED.

23. SEWER SERVICE IS AVAILABLE ONLY AFTER TRANSFER OF OWNERSHIP TO THE DISTRICT AND AFTER PAYMENT OF ALL CURRENT APPLICABLE FEES.


Designed By: Issue Date: No. Date By Revision Description	A NUT ASHING Ashin	Drawn By:	SNG/TVW PERMIT	Checked By: Project No.	TOWALL PARTY
	ン			25.453.9501	25 453 8208
PACIFIC SEAFOOD		8007 44TH AVE W	MUKILTEO, WA 98274 SITE CIVIL	TEC 11400 s.e. 8th street	




Know what's **below**. Call before you dig

S 1.	TE GRADING AND SWF NONCOMPLIANCE WITH THE EROSION CLEARING LIMITS VIOLATIONS MAY RE APPROVAL AND BOND FORECLOSURE	CONTROL REQUIREMENTS	S, WATER QUALITY REQUIREMENTS AND	
2.	PRIOR TO ANY SITE CONSTRUCTION, CLEARING LIMITS SHALL BE LOCATED	INCLUDING CLEARING, LO AND FIELD IDENTIFIED I	•	
3.	THE CONTRACTOR IS RESPONSIBLE F	JECT ENGINEER. THE PR	DETERMINED BY THE MONITORING OJECT ENGINEER'S NAME AND PHONE	
4.	AN INSPECTION BY THE CITY OF THE PRIOR TO ANY GRADING. THESE FAC	WPPP PRIOR TO ANY G SE FACILITIES SHALL BE ILITIES MUST BE SATISF/	RADING OR EXTENSIVE LAND CLEARING. ARRANGED FOR BY THE CONTRACTOR	
5.	ALL SITE WORK MUST BE PERFORMEI INTERNATIONAL BUILDING CODE.	D IN ACCORDANCE WITH	THE CURRENT CITY ADOPTED	
6.	ALL EARTH WORK SHALL BE PERFOR PRECONSTRUCTION SOILS INVESTIGAT			
7.		ALL MAY BE REQUIRED. TO BE DESIGNED AND	HORIZONTAL TO ONE FOOT VERTICAL, ALL ROCK RETAINING WALLS GREATER CERTIFIED BY A PROFESSIONAL	1"–1 GRAN GRAN
8.	STOCKPILES ARE TO BE LOCATED IN SEEDING AND MULCHING. HYDROSEED		QUATELY PROTECTED BY TEMPORARY	
9.	ALL STRUCTURAL FILLS SHALL BE CO UPPER 4 FEET & 90% MAXIMUM DEN			
10			ONTRACTOR SHALL CONTACT E A PRECONSTRUCTION CONFERENCE.	
11.	CONSTRUCTION STORMWATER POLLUT ANY SITE WORK. (SEE ATTACHED DE			
12	THE SURFACE OF ALL SLOPES SHALI OVERBUILDING THE SLOPES, THEN CU LIFT AS THE SLOPE IS BEING CONST EACH WORKING DAY.	JTTING BACK TO FINAL (
13	UPON COMPLETION OF WORK, FINAL WITH THE CURRENT CITY ADOPTED IN			LAST REVISED 11/10/0
	ITE GRADING AND SWF	PP NOTES (C	ITY OF MUKILTEO)	
1.		RANCE SHOULD BE CLEA NY DRAINAGE FACILITIES IG TO SPECIFICATIONS IN	ARED OF ALL VEGETATION, ROOTS, AND REQUIRED BECAUSE OF WASHING I THE PLAN. IF WASH RACKS ARE	
2.	GRAVEL SHALL BE CRUSHED BALLAS DIMENSIONS AT THE ENTRANCE.	T ROCK, 8"TO 12"IN DE	PTH AND INSTALLED TO THE SPECIFIED	
3.			AND PLACED ACROSS THE FULL WIDTH H OF ENTRANCE SHALL BE A MINIMUM	
4.		L, THEN THE TIRES MUS MUST BE CARRIED AWA		
5.	OF MUD ONTO PUBLIC RIGHTS-OF-W STONE, AS CONDITIONS DEMAND, AN	'AY. THIS MAY REQUIRE D REPAIR AND/OR CLEA _LED, DROPPED, WASHEI	N OUT ANY STRUCTURES USED TO O OR TRACKED FROM VEHICLES ONTO	
<u> </u>	AINTENANCE OF SILTA	TION BARRIEF	RS (CITY OF MUKILTEO)	
1.	SILTATION BARRIERS SHALL BE INSPI DAILY DURING PROLONGED RAINFALL DAMAGED BALES, END RUNS AND UN	CLOSE ATTENTION SHA	LL BE PAID TO THE REPAIR OF	
	SHOULD BE REMOVED AFTER EACH F SEDIMENT LEVEL REACHES APPROXIM	AINFALL. SEDIMENT DEP ATELY ONE-HALF THE S		
	SEDIMENT DEPOSITS REMAINING IN PI REQUIRED SHALL BE DRESSED TO CO			LAST REVISED 10/29/08
S	TAND PIPE AND SEDIM	ENT POND MA	INTENANCE (CITY OF MUKILTE	0)
1.		T BEEN DAMAGED BY EF	JLARLY TO INSURE THAT IT IS ROSION OR CONSTRUCTION EQUIPMENT. 7 TO INSURE THAT THE LINING IS WELL	
	ESTABLISHED AND EROSION RESISTAN	NT. THE SILTATION BASIN HICH PRODUCES RUNOFF	N SHOULD BE CHECKED FOR SEDIMENT WHEN THE SEDIMENT REACHES THE	
S	FINAL ENGINEERING APPROVAL IS CC	NTINGENT ON SWALE IN		0)
2.	INSPECTION MUST BE REQUESTED BY AT 425-355-4141 X251 AT LEAST 2			
3.	DESIGNATED REPRESENTATIVE, SHALL 6MONTH, 24-HOUR STORM EVENT. A SWALE. THE TOPSOIL SURFACE SHAL	. BE PLACED ABOVE THI MINIMUM TOPSOIL DEPT L BE AT DESIGN GRADE	TH OF 4" SHALL BE PLACED WITHIN THE FOR THE SWALE. AN EROSION	ANCHOR MUST BE
	UNTIL A WELLDEFINEDGROUND COVER	IS ESTABLISHED. THE	EROSION OF TOPSOIL AND SEED MIX WETTED SURFACE AREA AS DEFINED BY WITH WET TOLERANT PLANT SPECIES.	INSTALLE DEPTH C LESS TH OF THE
4. та	RECOMMENDED SEED MIX FOR BIOSW % WE LL OR MEADOW FESCUE 75-8	EIGHT % PURITY	% GERMINATION 90	HEIGHT USE 8"
FE OF	LL OR MEADOW FESCUE 75-8 STUCA ARUNDINACEA FESTUCA ELATIOR ASIDE/CREEPING BENTGRASS 10-1		85	SECURE
AG RE	ROSTIS PALUSTRIS DTOP BENTGRASS 5–10 ROSTIS ALBA		80	TEN
	AGROSTIS GIGANTEA			

LEGEND:

TY BOUNDARY	
ED BUILDING	
LINE	
TE VERTICAL CURB	
TE CURB BREAK	
RD ASPHALT PAVEMENT	
TE PAVEMENT	4
APE AREA	* + +
TE SIDEWALK	
ROAD	

4 4
4
* * * * * * * * * * * * * * * *
266666666666666666666

SITE KEY:

A STANDARD DUTY ASPHALT PAVEMENT B HEAVY DUTY ASPHALT PAVEMENT $\begin{pmatrix} 1 \\ C1 \end{pmatrix}$ \bigcirc CONCRETE PAVEMENT $\begin{pmatrix} 2 \\ C1 \end{pmatrix}$ D CONCRETE SIDEWALK E CONCRETE CURB BREAK (F) CONCRETE VERTICAL CURB $\begin{pmatrix} 6 \\ C1 \\ 1 \end{pmatrix}$ G PERPENDICULAR ADA RAMP PER SWDOT STD PLAN F-40.15-02 (H) ENTRANCE GATE PER ARCHITECTS PLANS (I) ADA PARKING STALL AND SIGN $\left(\frac{7}{11}\right)$ (J) CONCRETE WHEEL STOPS $\begin{pmatrix} 8 \\ C11 \end{pmatrix}$ (K) CROSSWALK PER SWDOT STD PLAN M-15.10-01, SEE SHEET CH-1.1 L 4" WIDE SOLID WHITE PAINT STRIPING (TYP) (M) 4" wide solid white paint striping, 45" @ 18" <u>0.</u>C. (TYP) (N) ASPHALT TO CONCRETE PAVEMENT TRANSITION $\left(\begin{array}{c} \\ C1.1 \end{array}\right)$ O LANDSCAPING. SEE LANDSCAPE PLANS. \bigcirc CONCRETE BOLLARD (TYP) $\begin{pmatrix} 4 \\ Cl 1 \end{pmatrix}$ (Q) PRECAST CONCRETE WHEEL STOP $(\frac{8}{C11})$ (R) CONCRETE EQUIPMENT PAD. SEE STRUCTURAL PLANS. S 2' VEHICLE OVERHANG ALLOWANCE (TYP) T FUTURE SNOHOMISH CO. P.U.D. UTUILITY POLE WITH BOLLARD PROTECTION(TYP) U ROCKERY. SEE GRADING PLAN. (V) GRAVEL ROAD FOR SNOHOMISH CO. P.U.D. MAINTENANCE ACCESS \bigcirc Cast-in-place wall. See structural plans. (X) HEAVY DUTY TO STANDARD DUTY PAVEMENT TRANSITION

By Revision Description
Date
Ř Ö
lesue Date: 09/16/2016 PERMIT Project No. 50530001
Designed By: JWT/SNG/TVW Drawn By: SNG/TVW Checked By: JJV
00 00 00 00 00 00 00 00 00 00 00 00 00
A CALLER A C
11400 s.e. 8th street suite 345 bellevue, wa 98004
PROCESSING FACILITY PROCESSING FACILITY 8007 44TH AVE W MUKILTEO, WA 98274 SITE AND PAVING IMPROVEMENTS
C-1.0

Know what's below. Call before you di

$\left \frac{\mathbf{S}}{1} \right $	ALL WORK AND MATERIALS SHALL COMPLY WITH ALL CITY/COUNTY REGULATIONS AND CODES AND	PAVEMENT NOTES (NAVIX) 1. MATERIAL THICKNESS IS COMPACTED DEPTH. APPLIES TO
2.	O.S.H.A. STANDARDS. THE DESIGN SHOWN IS BASED UPON THE ENGINEER'S UNDERSTANDING OF THE EXISTING CONDITIONS. THIS PLAN DOES NOT REPRESENT A DETAILED FIELD SURVEY. THE EXISTING	 SUITABLE ONSITE SOILS SHALL BE FREE OF DELETERIOUS USED FOR SUBBASE PROVIDED SOILS MEET REQUIREMENT SPECIFICATIONS.
	CONDITIONS. THIS FLAN DOES NOT REFRESENT A DETAILED TIELD SOLVET. THE EXISTING CONDITIONS SHOWN ON THIS PLAN SHEET ARE BASED UPON SURVEY PREPARED BY TERRANE, INC. (FORMERLY GEODIMENSIONS, INC.) DATED 02/12/2016. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING FIELD CONDITIONS PRIOR TO BIDDING THE PROPOSED SITEWORK IMPROVEMENTS. IF CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTIFY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITEWORK WHICH WOULD BE AFFECTED. IF CONTRACTOR DOES NOT ACCEPT EXISTING SURVEY, INCLUDING TOPOGRAPHY AS SHOWN ON THE PLANS, WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS OWN EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER FOR REVIEW.	3. FOR PREPARATION OF PAVEMENT SUBGRADE, FILL PLACE FINISHED SUBGRADE ELEVATION IN FILL AREAS AND AT L SUBGRADE IN ALL AREAS TO BE PAVED SHOULD BE COM THE MATERIAL'S MAXIMUM MODIFIED PROCTOR DRY DENSI SHOULD BE NON-YIELDING. FILL PLACED BELOW THIS LEV AT LEAST 95% OF THE MATERIAL'S MAXIMUM DRY DENSIT
3.	<u>CAUTION – NOTICE TO CONTRACTOR</u> THE CONTRACTOR IS SPECIFICALLY CAUTIONED THAT THE LOCATION AND/OR ELEVATION OF	4. ALL COMPACTION SHALL BE IN ACCORDANCE WITH THE W SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION,
	EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITIES, AND WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT TO BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANY AT LEAST 48 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES AND EXISTING IMPROVEMENTS WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS ON THE PLANS.	 IF ALTERNATIVE PAVEMENT SECTION WITH A.T.B. IS USED FAILED AREAS THAT SHOW CRACKING UNDER EQUIPMENT HEAVY CONSTRUCTION TRAFFIC HAS CEASED AND PRIOR OF HMA PAVEMENT. CRUSHED BASE COURSE MATERIALS SHALL CONFORM TO SECTION 9-03.9(3) OF THE LATEST EDITION OF THE WSD
4.	CONTRACTOR SHALL REFER TO ARCHITECTURAL PLANS FOR EXACT LOCATION AND DIMENSIONS OF VESTIBULE, SLOPED PAVING, EXIT PORCHES, SIDEWALKS, RAMPS & TRUCK DOCKS, PRECISE BUILDING DIMENSIONS AND EXACT BUILDING UTILITY ENTRANCE LOCATIONS.	FOR ROAD AND BRIDGE CONSTRUCTION. 7. ASPHALTIC SURFACE COURSE MIXTURES SHALL BE IN AC OF THE LATEST EDITION OF THE WSDOT STANDARD SPEC
5.	DIMENSIONS SHOWN REFER TO FACE OF CURB, FACE OF BUILDING OR TO THE CENTERLINE OF PAVEMENT STRIPING, UNLESS OTHERWISE NOTED.	SHALL HAVE A MINIMUM MARSHALL STABILITY OF 1,000 F COURSE SHOULD BE COMPACTED TO A MINIMUM OF 96% SPECIFICATION D 1559).
6.	ALL PAVED PARKING LOT AREAS WITHIN THE LIMITS OF IMPROVEMENTS SHALL BE PER STRUCTURAL PLANS UNLESS OTHERWISE NOTED.	8. THE PORTLAND CEMENT CONCRETE PAVEMENT MIXTURE S CONCRETE FOR PAVEMENT SECTION 5-05 OF THE LATES
7.	CONTRACTOR SHALL PROVIDE A TEMPORARY TRAFFIC CONTROL PLAN FOR THE CITY ENGINEER'S APPROVAL PRIOR TO ANY WORK WITHIN THE CITY RIGHT-OF-WAY.	STANDARD SPECIFICATIONS FOR ROAD & BRIDGE CONSTR BE DESIGNED TO DEVELOP A MINIMUM COMPRESSIVE STRI DAYS WITH A 4 INCH MAXIMUM SLUMP.
8.	FIRE LANE STRIPING AROUND BUILDING PERIMETER AND ALONG FIRE TRUCK ACCESS WAYS SHALL BE INSTALLED AS PART OF THIS CONTRACT, IN ACCORDANCE WITH THE LOCAL CODE AND FIRE MARSHAL REQUIREMENTS.	9. CONTRACTOR SHALL PROVIDE A PRIME COAT AND TACK WHERE CURB CONTACTS ASPHALT.
9.	REFER TO BOUNDARY SURVEY FOR LEGAL DESCRIPTION, DIMENSIONS OF PROPERTY LINES, BASIS OF BEARINGS & BENCHMARK INFORMATION.	
10.	ALL ON-SITE PAINTED STRIPING SHALL BE DOUBLE COATED. SEPARATE COATS SHALL BE APPLIED NO SOONER THAN 4 HOURS APART. (CONTRACTOR TO REFER TO PROJECT SPECIFICATIONS FOR ADDITIONAL PAVING MARKING REQUIREMENTS.)	
11.	PARKING LOT STRIPING SHALL BE WHITE, 4" WIDTH, & DOUBLE COATED, UNLESS OTHERWISE NOTED. LIGHT POLE BASES TO BE PAINTED TRAFFIC YELLOW (DOUBLE COAT)	PORTLAND (WSDOT ST
12.	ALL DISTURBED AREAS THAT WILL BE PERMANENTLY LANDSCAPED ARE TO RECEIVE FOUR INCHES OF TOPSOIL, SEED, MULCH AND WATER UNTIL A HEALTHY STAND OF GRASS IS ESTABLISHED.	4"
13.	EXISTING STRUCTURES WITHIN CONSTRUCTION LIMITS ARE TO BE ABANDONED, REMOVED OR RELOCATED AS NECESSARY. ALL COST SHALL BE INCLUDED IN BASE BID.	4" CRUSHED S
14.	CONTRACTOR SHALL BE RESPONSIBLE FOR ALL RELOCATIONS, INCLUDING BUT NOT LIMITED TO, ALL UTILITIES, STORM DRAINAGE, SIGNS, TRAFFIC SIGNALS & POLES, ETC. AS REQUIRED. ALL WORK SHALL BE IN ACCORDANCE WITH GOVERNING AUTHORITIES SPECIFICATIONS AND SHALL BE APPROVED BY SUCH. ALL COST SHALL BE INCLUDED IN BASE BID.	SUBGRADE ACCORDAN RECOMMEN
	ENERAL NOTES (CITY OF MUKILTEO)	GEOTECHNI STUDY PRE REDMOND
1.	ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT CITY OF MUKILTEO STANDARDS AND SPECIFICATIONS; THE CURRENT EDITION OF THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR ROAD, BRIDGE, AND MUNICIPAL CONSTRUCTION; AND THE ADOPTED EDITION OF THE WASHINGTON STATE DEPARTMENT OF ECOLOGY STORMWATER MANAGEMENT MANUAL FOR WESTERN WASHINGTON.	SERVICES, CEMENT CONCRETE SIDEWA NTS
2.	ALL WORK WITHIN THE PLAT AND CITY RIGHT-OF-WAY SHALL BE SUBJECT TO THE INSPECTION OF THE CITY ENGINEER OR DESIGNATED REPRESENTATIVE.	
3.	PRIOR TO ANY SITE CONSTRUCTION INCLUDING CLEARING/LOGGING OR GRADING, THE SITE CLEARING LIMITS SHALL BE LOCATED AND FIELD IDENTIFIED BY THE PROJECT SURVEYOR (OR PROJECT ENGINEER) AS REQUIRED BY THESE PLANS. THE PROJECT SURVEYOR'S NAME AND PHONE NUMBER IS EDWIN GREEN JR., (425) 455-4488.	
4.	THE CONTRACTOR IS RESPONSIBLE FOR WATER QUALITY AS DETERMINED BY THE MONITORING PROGRAM ESTABLISHED BY THE PROJECT ENGINEER. THE PROJECT ENGINEER'S NAME AND PHONE NUMBER IS JOE TAFLIN, P.E., (425) 453-9501 EXT. 1515.	
5.	PRIOR TO ANY SITE WORK, THE CONTRACTOR SHALL CONTACT THE CITY OF MUKILTEO COMMUNITY DEVELOPMENT AT 425-355-4141 X251 TO SCHEDULE A PRECONSTRUCTION CONFERENCE. ENGINEERED AS-BUILT DRAWINGS IN ACCORDANCE WITH THE CURRENT ADOPTED INTERNATIONAL BUILDING CODE SHALL BE REQUIRED PRIOR TO FINAL SITE APPROVAL.	5 1/2"
6.	THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS FOR UTILITY, ROAD, AND RIGHT-OF-WAY CONSTRUCTION. THE CONTRACTOR FOR THIS PROJECT IS CONTACT PERSON IS PHONE , MOBILE PHONE, EMERGENCY PHONE	PAVEMENT FINISH
7.	THE CONSTRUCTION STORMWATER POLLUTION PREVENTION (SWPP) FACILITIES SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE APPROVED SWPP PLANS PRIOR TO ANY GRADING OR EXTENSIVE LAND CLEARING. THESE FACILITIES MUST BE SATISFACTORILY MAINTAINED UNTIL CONSTRUCTION AND LANDSCAPING IS COMPLETED AND THE POTENTIAL FOR ON-SITE EROSION HAS PASSED. SEDIMENT LADEN WATERS SHALL NOT ENTER THE NATURAL DRAINAGE SYSTEM.	GRADE
8.	NONCOMPLIANCE WITH THE REQUIREMENTS FOR; EROSION CONTROLS, WATER QUALITY AND CLEARING LIMITS MAY RESULT IN REVOCATION OF; PROJECT PERMITS, PLAN APPROVAL AND BOND FORECLOSURES.	
9.	TRENCH BACKFILL OF NEW UTILITIES AND STORM DRAINAGE FACILITIES SHALL BE COMPACTED TO 95% MAXIMUM DENSITY (MODIFIED PROCTOR) UNDER ROADWAYS AND 90% MAXIMUM DENSITY (MODIFIED PROCTOR) OFF ROADWAYS. COMPACTION SHALL BE PERFORMED IN ACCORDANCE WITH SECTIONS 7-08.3(3) AND 2-03.3(14)C - METHOD B AS DEFINED IN THE CURRENT EDITION OF THE WSDOT STANDARD SPECIFICATIONS FOR ROAD, BRIDGE, AND MUNICIPAL CONSTRUCTION.	CONCRETE VERTICAL CURB
26 10	THE OWNER AND CONTRACTOR SHALL BE RESPONSIBLE FOR LOCATING AND PROTECTING ALL EXISTING UTILITIES PRIOR TO BEGINNING CONSTRUCTION. LOCATION OF UTILITIES SHOWN ON CONSTRUCTION PLANS ARE BASED ON BEST RECORDS AVAILABLE AND ARE SUBJECT TO VARIATION. FOR ASSISTANCE IN UTILITY LOCATION, CALL 1-800-424-5555.	
11.	PRIOR TO CONSTRUCTION THE OWNER AND/OR CONTRACTOR SHALL NOTIFY THE PROJECT ENGINEER AND THE CITY ENGINEER WHEN CONFLICTS EXIST BETWEEN THE PLANS AND FIELD CONDITIONS. CONFLICTS SHALL BE RESOLVED (INCLUDING PLAN AND PROFILE REVISIONS) AND RESUBMITTED FOR APPROVAL PRIOR TO PROCEEDING WITH CONSTRUCTION.	PAVEMENT SURFACE
12	THE CONTRACTOR SHALL KEEP TWO SETS OF PLANS ON SITE AT ALL TIMES FOR RECORDING AS-BUILT INFORMATION; ONE SET SHALL BE SUBMITTED TO THE PROJECT ENGINEER, AND ONE SET SHALL BE SUBMITTED TO THE CITY ENGINEER AT COMPLETION OF CONSTRUCTION AND PRIOR TO FINAL ACCEPTANCE OF WORK.	NOTES: A THREE (3) CURB BREAKS PER PARKING ISLE,
13	A GRADING PERMIT ISSUED PURSUANT TO THE CURRENT ADOPTED INTERNATIONAL BUILDING CODE, AND APPROVAL OF THE TEMPORARY EROSION AND SEDIMENTATION CONTROL PLAN SHALL BE OBTAINED FROM THE COMMUNITY DEVELOPMENT DEPARTMENT PRIOR TO ANY ON-SITE GRADING WORK NOT EXPRESSLY EXEMPT BY THE CURRENT ADOPTED INTERNATIONAL BUILDING CODE.	EVENLY SPACED TO ALLOW STORMWATER RUNOFF ACCESS TO SWALE AREA.
14	PRIOR TO COMMENCEMENT OF FRAMING, FINAL DRAINAGE INSPECTION AND APPROVAL OF THE ROOF LEADER AND POSITIVE FOOTING SYSTEMS SHALL BE COMPLETED BY THE BUILDING DEPARTMENT. CALL 360-363-8100 TO SCHEDULE THE INSPECTION.	VERTICAL CURB BREAK

NOTES (NAVIX)

SS IS COMPACTED DEPTH. APPLIES TO ALL SECTIONS.

SOILS SHALL BE FREE OF DELETERIOUS MATERIALS AND MAY BE SE PROVIDED SOILS MEET REQUIREMENTS IN THE PROJECT'S

OF PAVEMENT SUBGRADE, FILL PLACED WITHIN 12 INCHES OF E ELEVATION IN FILL AREAS AND AT LEAST THE UPPER 8 INCHES OF AREAS TO BE PAVED SHOULD BE COMPACTED TO AT LEAST 95% OF AXIMUM MODIFIED PROCTOR DRY DENSITY (ASTM D-1557) AND YIELDING. FILL PLACED BELOW THIS LEVEL SHOULD BE COMPACTED TO THE MATERIAL'S MAXIMUM DRY DENSITY.

SHALL BE IN ACCORDANCE WITH THE WSDOT STANDARD OR ROAD AND BRIDGE CONSTRUCTION, SECTION 2-03.3(14)D.

AVEMENT SECTION WITH A.T.B. IS USED DURING CONSTRUCTION ANY AT SHOW CRACKING UNDER EQUIPMENT SHOULD BE REPAIRED ONCE TION TRAFFIC HAS CEASED AND PRIOR TO PLACEMENT OF FINAL LIFT

OURSE MATERIALS SHALL CONFORM TO THE REQUIREMENTS OF OF THE LATEST EDITION OF THE WSDOT STANDARD SPECIFICATIONS RIDGE CONSTRUCTION.

CE COURSE MIXTURES SHALL BE IN ACCORDANCE WITH SECTION 9-02 DITION OF THE WSDOT STANDARD SPECIFICATIONS. THE MIXTURE NIMUM MARSHALL STABILITY OF 1,000 POUNDS, AND THE SURFACE BE COMPACTED TO A MINIMUM OF 96% MARSHALL DENSITY (ASTM 559).

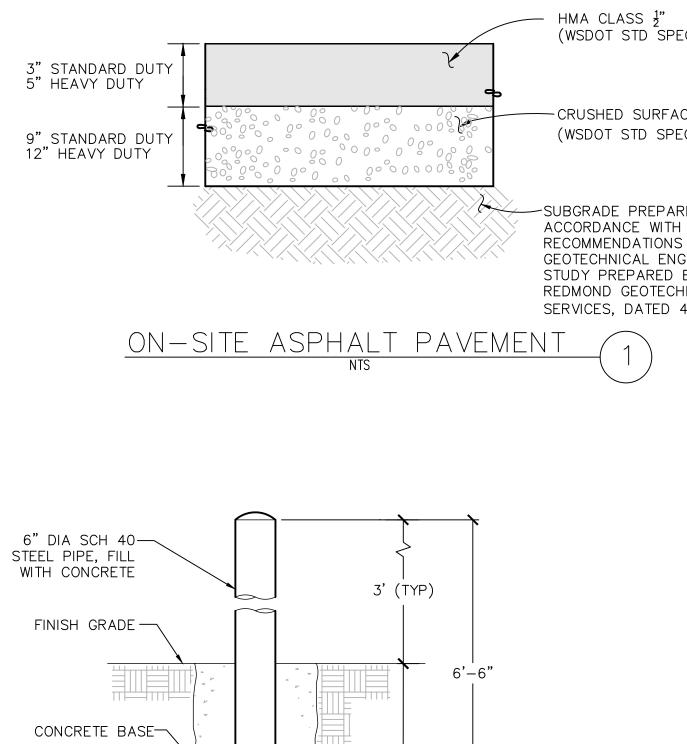
MENT CONCRETE PAVEMENT MIXTURE SHALL BE IN ACCORDANCE WITH VEMENT SECTION 5-05 OF THE LATEST EDITION OF THE WSDOT ICATIONS FOR ROAD & BRIDGE CONSTRUCTION. THE MIXTURE SHALL DEVELOP A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 ICH MAXIMUM SLUMP.

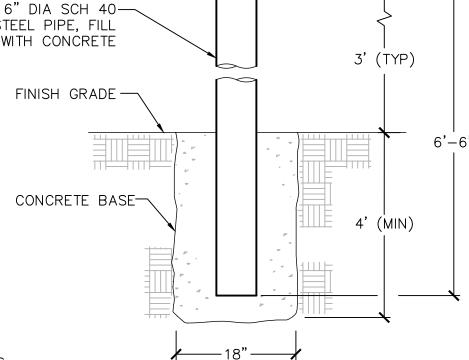
> PORTLAND CEMENT CONCRETE (WSDOT STD SPEC 5-05)

(WSDOT STD SPEC 9-03.9 (3))

- CRUSHED SURFACING

SUBGRADE PREPARED IN


RECOMMENDATIONS OF THE

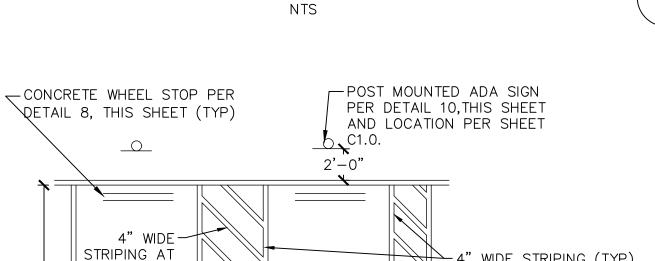

GEOTECHNICAL ENGINEERING

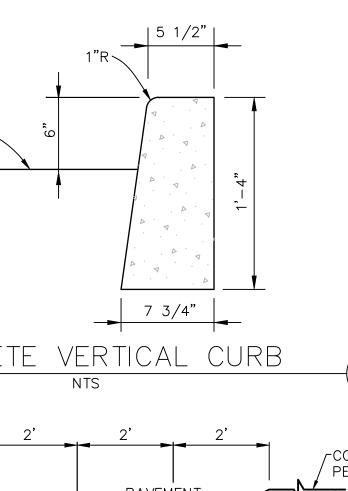
ACCORDANCE WITH

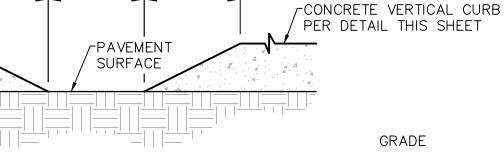
STUDY PREPARED BY

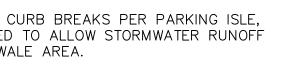
L PROVIDE A PRIME COAT AND TACK COAT TO FACE OF CURB TACTS ASPHALT.

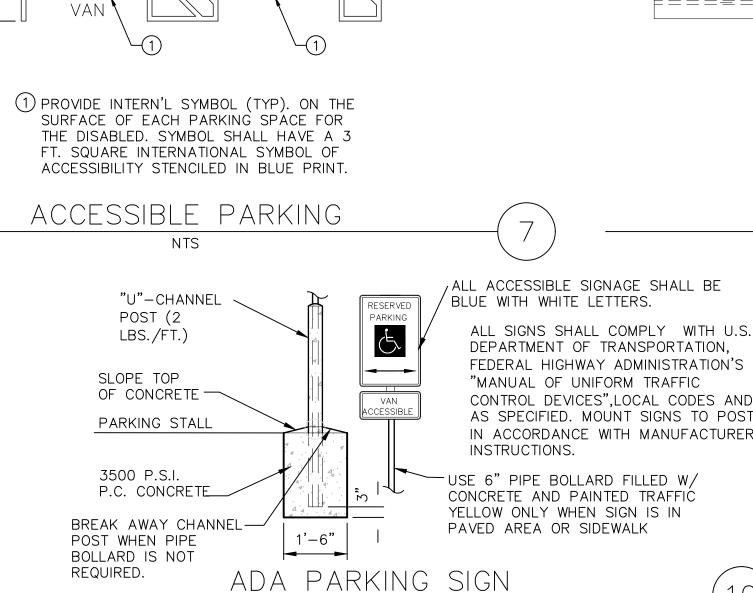
NOTES: A PAINT ALL NEW BOLLARDS AS FOLLOWS: 1-SURFACE PREPARATION; SOLVENT CLEANING SSPC SP-1 AND HAND TOOL CLEANING SP-2 OR 3 2-PRIMER; RECOATABLE EPOXY PRIMER, ONE COAT, 5.0 MDFT 3-FINISH COAT; TWO-COMPONENT, HI-SOLIDS ACRYLIC POLYURETHANE, ONE TO TWO COATS TO COVER, 3.0-4.0 MDFTPC COLOR TO BE YELLOW PER SPECIFICATION 32_17_23.

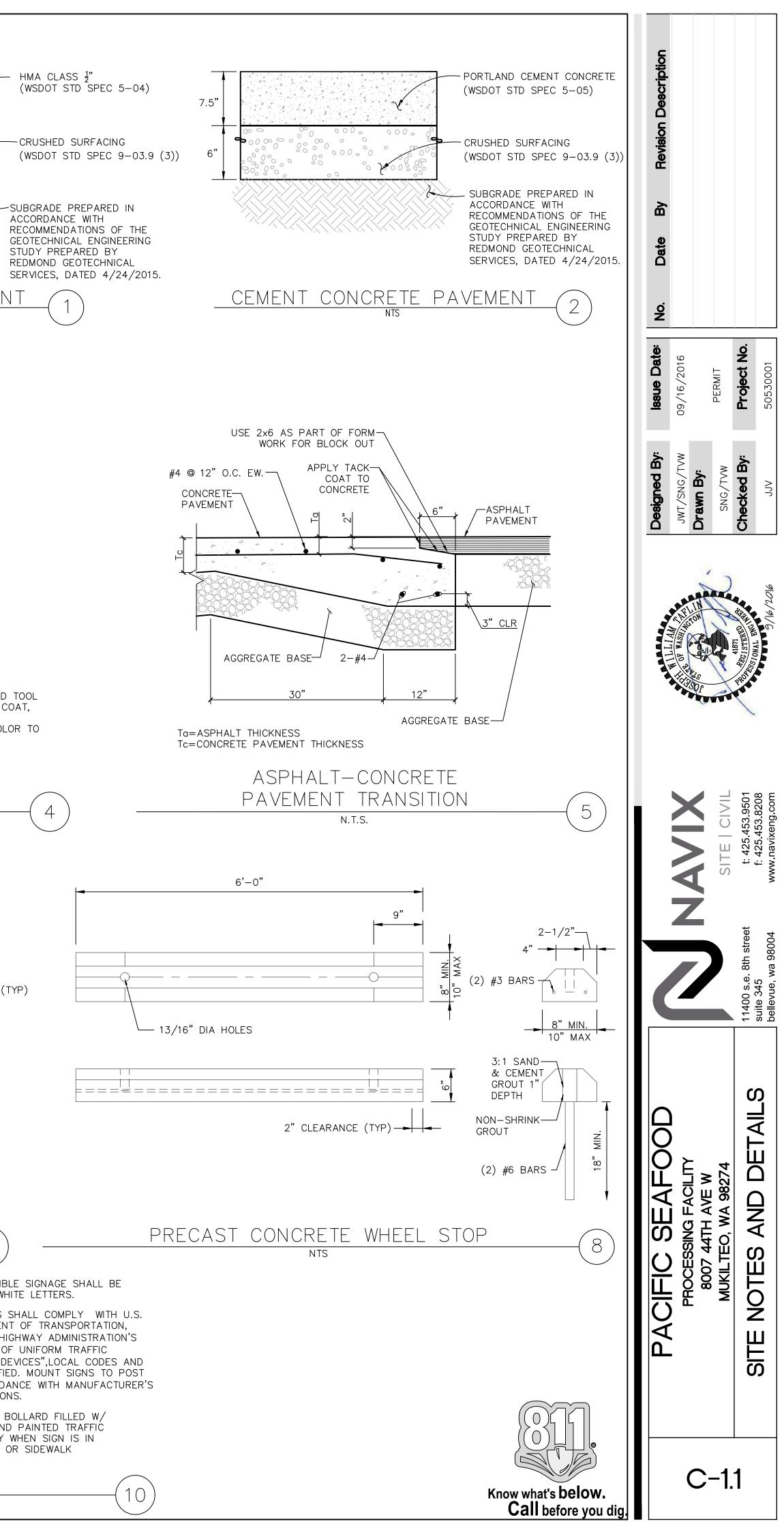

B SEE DETAIL FOR BOLLARD SPACING @ PIV'S AND FIRE HYDRANTS. C BOLLARD SPACING SHOWN IS APPROXIMATE,

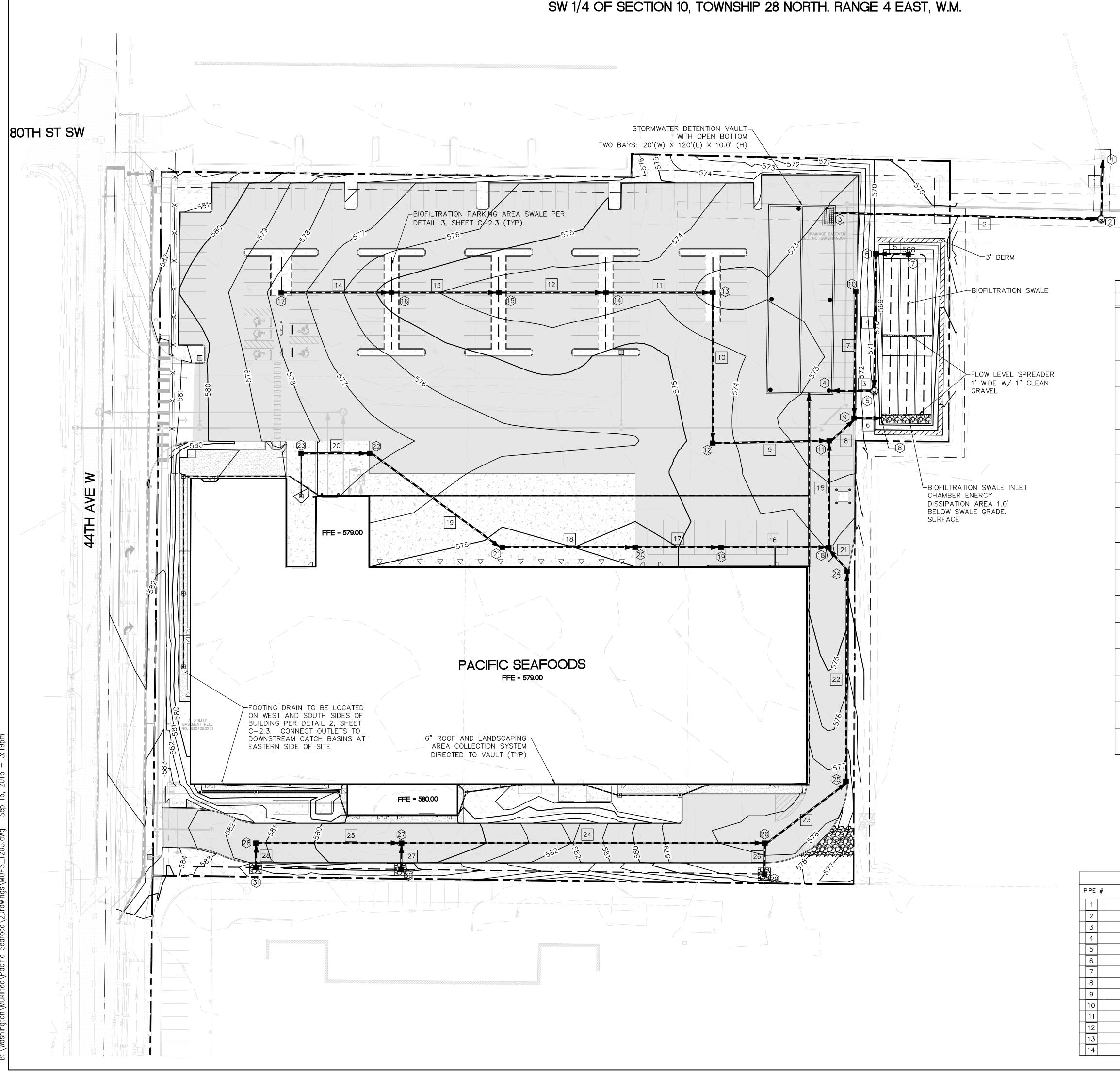

BOLLARD

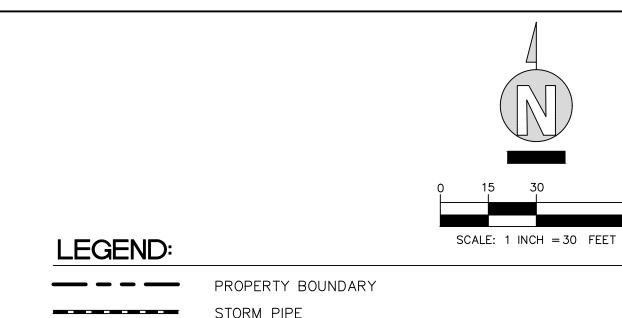

8'-6"

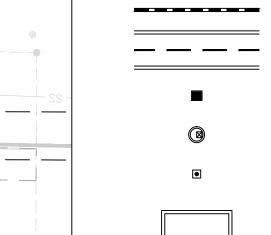

45°, 36" O.C.


8'-6"




NTS


DEPARTMENT OF TRANSPORTATION, FEDERAL HIGHWAY ADMINISTRATION'S "MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES",LOCAL CODES AND AS SPECIFIED. MOUNT SIGNS TO POST IN ACCORDANCE WITH MANUFACTURER'S


4" WIDE STRIPING (TYP)

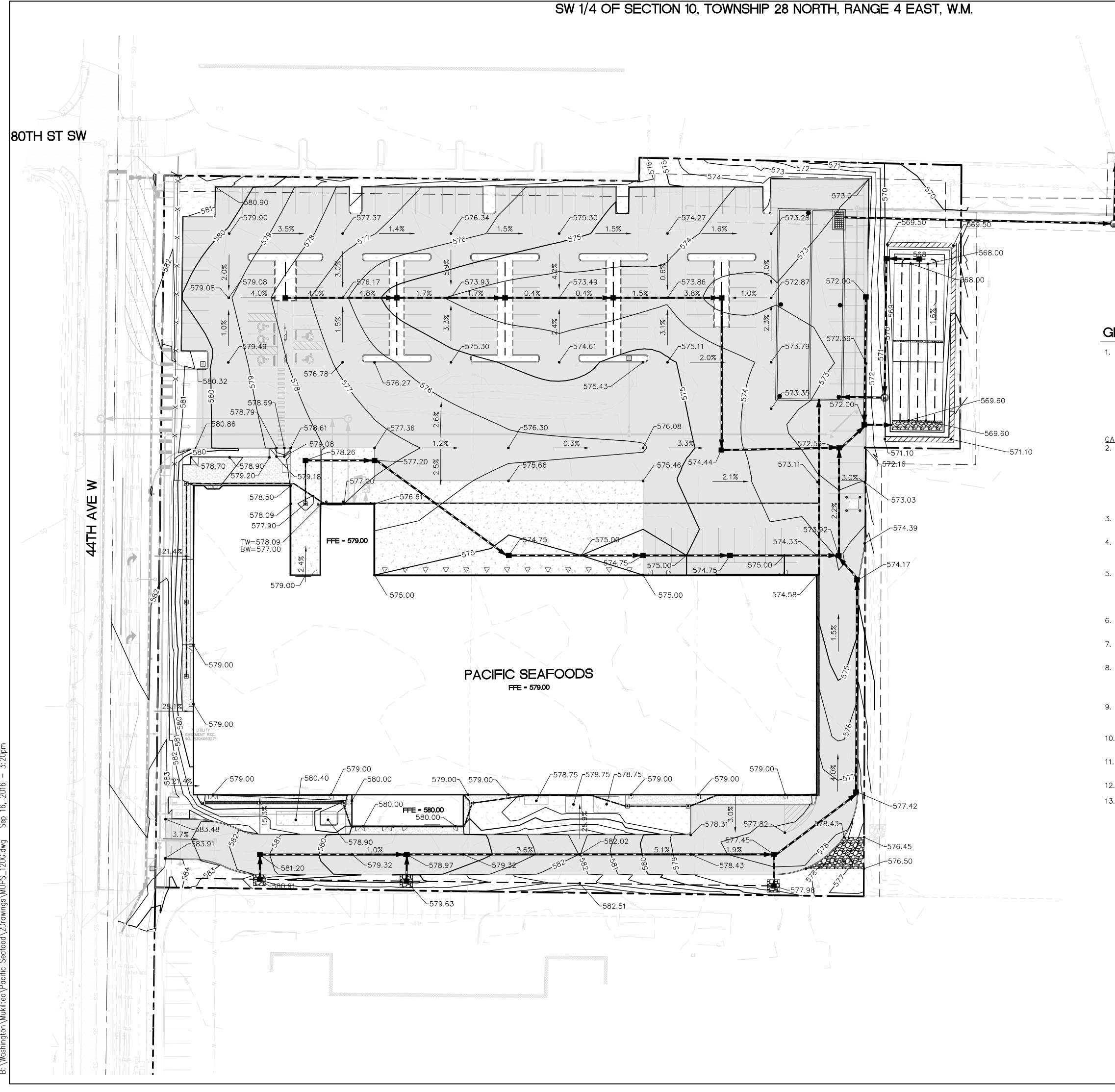
USE 6" PIPE BOLLARD FILLED W/ CONCRETE AND PAINTED TRAFFIC YELLOW ONLY WHEN SIGN IS IN PAVED AREA OR SIDEWALK

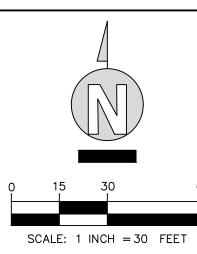
۲

STORM PIPE BIOFILTRATION SWALE $\begin{pmatrix} 3 \\ C2.2 \end{pmatrix}$

TYPE I CATCH BASIN

TYPE II CATCH BASIN $\begin{pmatrix} 1 \\ C2.2 \end{pmatrix}$ AREA DRAIN $\begin{pmatrix} 1 \\ C2.2 \end{pmatrix}$


PRECAST DETENTION VAULT


#			HEDULE
	DESCRIPTION	#	DESCRIPTION
1 RIM	T. CB TYPE 2 = 568.77 IE = 555.67 (N)	16	CB TYPE 1 RIM = 574.52 12" IE = 571.41
6"	IE = 555.77 (S) IE = 564.57 (W,E) N 12" IE 555.77 (S)	17	CB TYPE 1 RIM = 577.63 12" IE = 574.25
2 RIM 12"	TYPE 2-48" = 569.75 IE = 555.97	18	CB TYPE 1 RIM = 573.92 4" IE = 571.36
GRA STF	ULT 5.83' X 11' ACCESS ATE AND OUTLET RUCTURE = 572.90 IE = 557.00	19	12" $IE = 570.69$ CB TYPE 1 RIM = 574.75 12" $IE = 571.04$
(4) VAL RIM	JLT INLET AND ACCESS LID = 572.69 IE = 557.90	20	CB TYPE 1 RIM = 574.75 12" IE = 571.32
5 CB	$\begin{array}{r} \text{TYPE } 2-48'' \\ = 571.00 \\ \text{IE} = 563.50 \end{array}$	21	CB TYPE 1 RIM = 574.75 12" IE = 571.75
G RIM	TYPE 1 = 569.61 IE = 565.50	22	CB TYPE 1 RIM = 577.20 12" IE = 573.92
(7) BIO WIT RIM	FILTRATION SWALE OUTLET CB H BEEHIVE GRATE = 568.00 IE = 566.00	23	CB TYPE 1 RIM = 578.26 6" IE = 575.30 12" IE = 574.80
8 INLI	FILTRATION SWALE	24	CB TYPE 1 RIM = 574.17 12" IE = 571.17
(9) RIM	TYPE 1 = 572.00 IE = 568.69	25	CB TYPE 1 RIM = 577.42 12" IE = 572.79
CB (10) RIM	TYPE 1 = 572.00 IE = 569.50	26	CB TYPE 1 RIM = 577.45 12" IE = 573.12
CB (11) RIM	TYPE 1 = 572.56 IE = 568.80	27	CB TYPE 1 RIM = 578.97 12" IE = 575.46
CB (12) RIM	TYPE 1 = 574.44 IE = 569.18	28	CB TYPE 1 RIM = 581.20 12" IE = 576.40
CB (13) RIM	TYPE 1 = 572.55 IE = 569.67	29	CB TYPE 1 RIM = 577.98 12" IE = 575.48
CB (14) RIM	TYPE 1 = 573.34 IE = 570.02	30	CB TYPE 1 RIM = 579.63 12" IE = 575.63
(15) CB	TYPE 1 = 573.34 IE = 570.37	31	CB TYPE 1 RIM = 580.91 12" IE = 577.91

PIPE SCHEDULE							
#	DIAMETER	LENGTH (FT.)	SLOPE (FT./FT.)	PIPE #	DIAMETER	LENGTH	SLOPE (FT./FT.)
	12" CPEP	40	.0050	15	12" CPEP	69	.0274
	12" CPEP	172	.0072	16	12" CPEP	69	.0050
	12" CPEP	28	.0238	17	12" CPEP	55	.0050
	12" CPEP	88	.0227	18	12" CPEP	85	.0050
	12" CPEP	21	.2000	19	12" CPEP	105	.0207
	12" CPEP	18	.0050	20	12" CPEP	44	.0200
	12" CPEP	88	.0100	21	12" CPEP	20	.0240
	12" CPEP	16	.0050	22	12" CPEP	135	.0120
	12" CPEP	75	.0050	23	12" CPEP	65	.0051
	12" CPEP	97	.0050	24	12" CPEP	232	.0100
	12" CPEP	69	.0050	25	12" CPEP	92	.0102
	12" CPEP	69	.0050	26	12" CPEP	20	.1180
	12" CPEP	69	.0150	27	12" CPEP	17	.0100
	12" CPEP	71	.0400	28	12" CPEP	16	.0944

Know what's **below. Call** before you dig.

LEGEND: <u>2.0%</u> 573.54~

PROPERTY BOUNDARY BIOFILTRATION SWALE TYPE I CATCH BASIN TYPE II CATCH BASIN AREA DRAIN PRECAST DETENTION VAULT

SLOPE SPOT ELEVATION: HP = HIGH POINTLP = LOW POINT

GRADING NOTES: (NAVIX)

- -•

1. THE DESIGN SHOWN IS BASED UPON THE ENGINEER'S UNDERSTANDING OF THE EXISTING CONDITIONS. THE PLAN DOES NOT REPRESENT A DETAILED FIELD SURVEY. THE EXISTING CONDITIONS SHOWN ON THIS PLAN SHEET ARE BASED UPON THE SURVEY PREPARED BY TERRANE, INC. (FORMERLY GEODIMENSIONS INC.), DATED 02/12/16. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING FIELD CONDITIONS PRIOR TO BIDDING THE PROPOSED SITEWORK IMPROVEMENTS. IF CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTIFY THE OWNER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITEWORK WHICH WOULD BE AFFECTED. IF CONTRACTOR DOES NOT ACCEPT EXISTING SURVEY, INCLUDING TOPOGRAPHY AS SHOWN ON THE PLANS, WITHOUT EXCEPTION, HE SHALL HAVE MADE, AT HIS OWN EXPENSE, A TOPOGRAPHIC SURVEY BY A REGISTERED LAND SURVEYOR AND SUBMIT IT TO THE OWNER FOR REVIEW.

<u>CAUTION - NOTICE TO CONTRACTOR</u>

2. THE CONTRACTOR IS SPECIFICALLY CAUTIONED AT THE LOCATION AND/OR ELEVATION OF EXISTING UTILITIES AS SHOWN ON THESE PLANS IS BASED ON RECORDS OF THE VARIOUS UTILITY COMPANIES AND, WHERE POSSIBLE, MEASUREMENTS TAKEN IN THE FIELD. THE INFORMATION IS NOT BE RELIED ON AS BEING EXACT OR COMPLETE. THE CONTRACTOR MUST CALL THE APPROPRIATE UTILITY COMPANY AT LEAST 48 HOURS BEFORE ANY EXCAVATION TO REQUEST EXACT FIELD LOCATION OF UTILITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO RELOCATE ALL EXISTING UTILITIES WHICH CONFLICT WITH THE PROPOSED IMPROVEMENTS SHOWN ON THESE PLANS.

3. THE SPOT ELEVATIONS INDICATED ON THIS PLAN REPRESENT THE DESIGN TOP OF PAVEMENT, UNLESS OTHERWISE NOTED.

4. CONTRACTOR IS RESPONSIBLE FOR DEMOLITION OF EXISTING STRUCTURES INCLUDING REMOVAL OF ANY EXISTING UTILITIES SERVING THE STRUCTURE. UTILITIES ARE TO BE REMOVED TO THE RIGHT-OF-WAY.

5. ALL LAWN AREAS SHALL RECEIVE 4 INCHES OF TOPSOIL AND ALL OTHER LANDSCAPED AREAS SHALL RECEIVE 6 INCHES OF TOPSOIL PER LANDSCAPING SPECIFICATIONS. CONTRACTOR SHALL APPLY STABILIZATION FABRIC TO ALL SLOPES 3H:1V OR STEEPER. CONTRACTOR SHALL STABILIZE DISTURBED AREAS WITH GRASS IN ACCORDANCE WITH LOCAL SPECIFICATION UNTIL A HEALTHY STAND OF GRASS IS OBTAINED.

6. ALL CUT AND FILL SLOPES SHALL BE CONSTRUCTED PER THE UBC CODE AND APPLICABLE LOCAL REGULATION. ALL CUT AND FILL SLOPES SHALL BE 3:1 OR FLATTER UNLESS OTHERWISE NOTED.

7. CONTRACTOR SHALL ASSURE POSITIVE DRAINAGE AWAY FROM BUILDINGS FOR ALL NATURAL AND PAVED AREAS AND SHALL GRADE ALL AREAS TO PRECLUDE PONDING OF WATER.

8. ALL POLLUTANTS OTHER THAN SEDIMENT ON-SITE DURING CONSTRUCTION SHALL BE HANDLED AND DISPOSED OF IN A MANNER THAT DOES NOT CAUSE CONTAMINATION OF STORMWATER. THE CONTRACTOR SHALL ADHERE TO ALL TERMS AND CONDITIONS AS OUTLINED IN THE GENERAL N.P.D.E.S. PERMIT FOR STORMWATER DISCHARGE ASSOCIATED WITH CONSTRUCTION ACTIVITIES.

9. PROPERTIES AND WATERWAYS DOWNSTREAM OF THE SITE SHALL BE PROTECTED FROM EROSION DUE TO INCREASES IN THE VOLUME, VELOCITY AND PEAK FLOW RATE OF STORMWATER RUNOFF FROM PROJECT SITE.

10. CONSTRUCTION SHALL COMPLY WITH ALL APPLICABLE GOVERNING CODES AND BE CONSTRUCTED TO SAME.

11. CONTRACTOR TO REMOVE UNSUITABLE SOILS LOCATED WITHIN THE BUILDINGS SPLAY LINE OF THE FOOTINGS.

12. FOR BOUNDARY AND TOPOGRAPHIC INFORMATION REFER TO PROJECT SURVEY.

13. FOR LAYOUT INFORMATION REFER TO THE SITE PLAN.

Know what's **below. Call** before you dig.

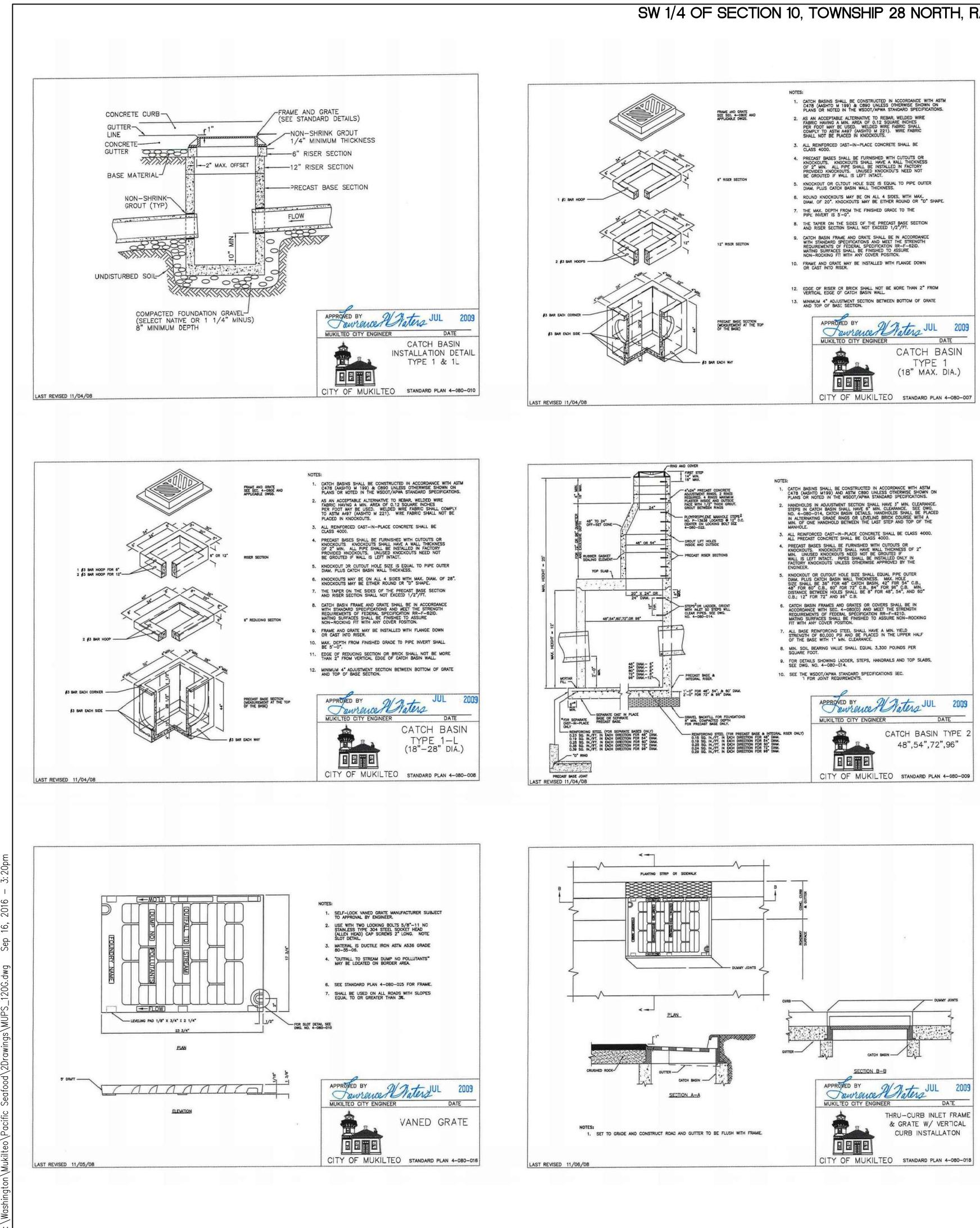
te By Revision Description					
o. Date					
Issue Date: No.	09/16/2016		PERMIT	Project No.	50530001
Jesigned By:	JWT/SNG/TVW	Drawn By:	SNG/TVW	Checked By:	VLL
Desi	JWL,	Draw	N	Che	
	JWT, JWT, JWT, JWT, JWT,			<u> </u>	9/16/2016
				53.9501	f: 425.453.8208 www.navixeng.com

AN

ב

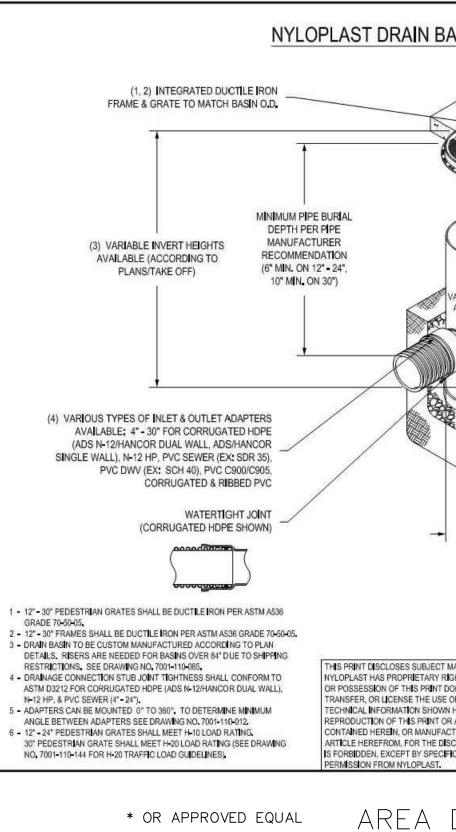
GRADING

FINISHED

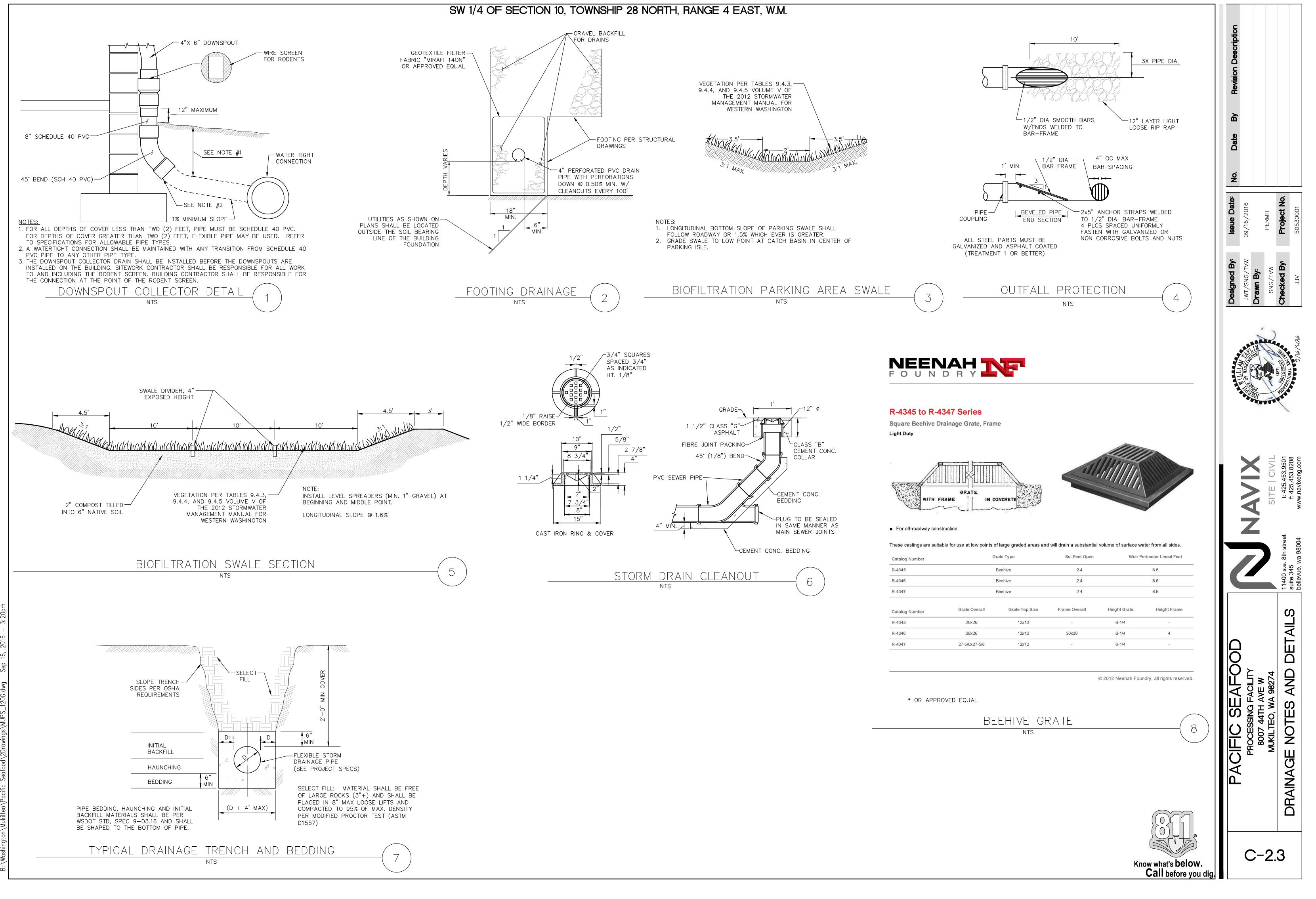

Щ

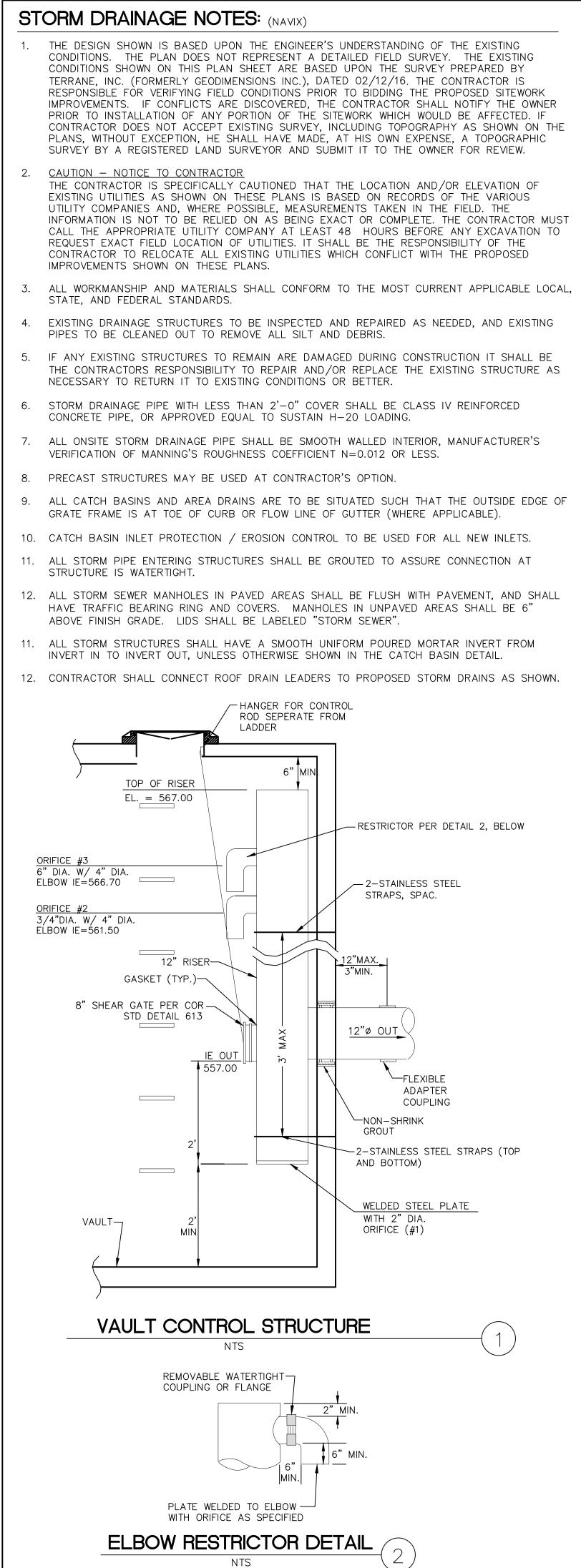
C-2.1

A F A

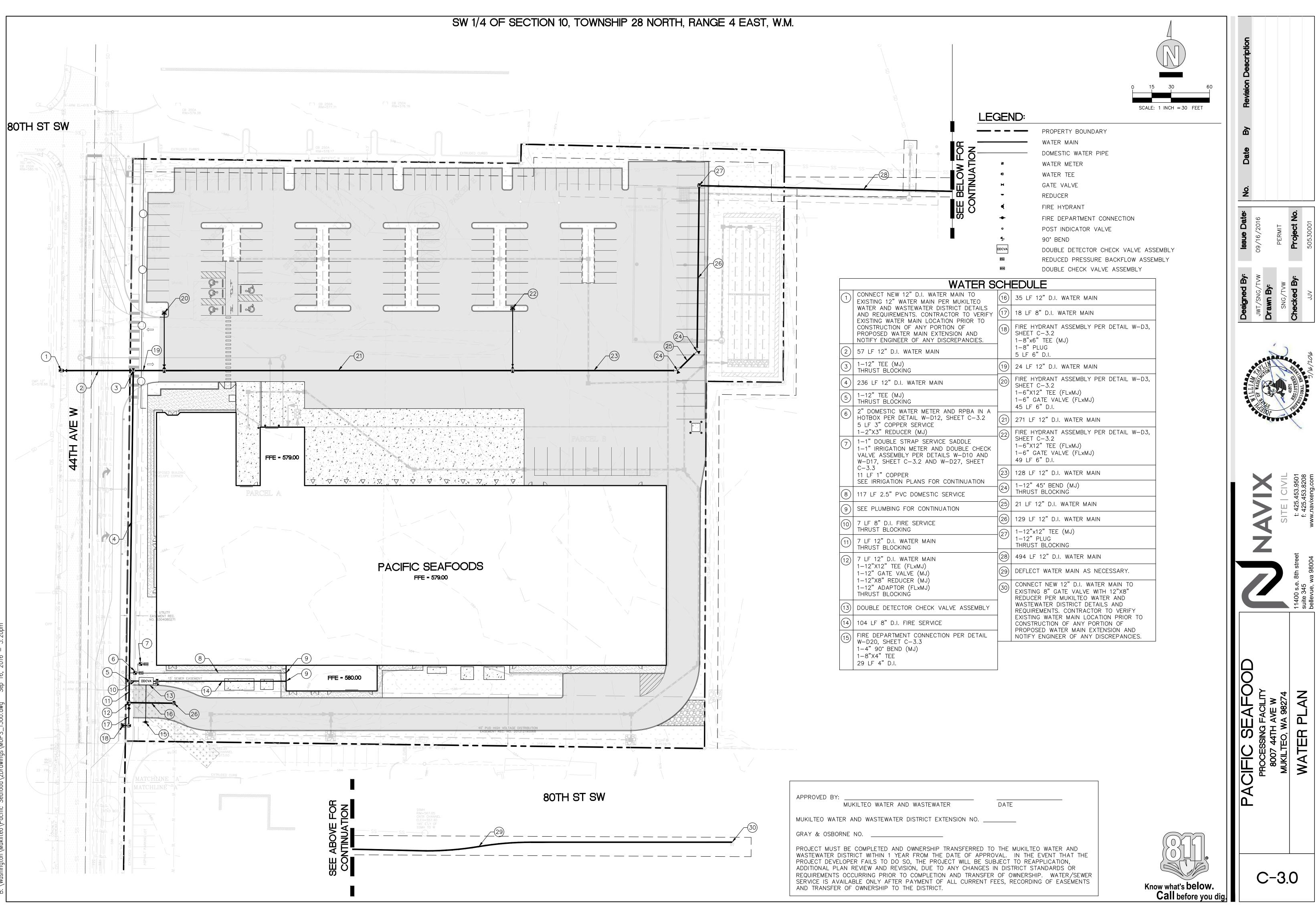

Ц С

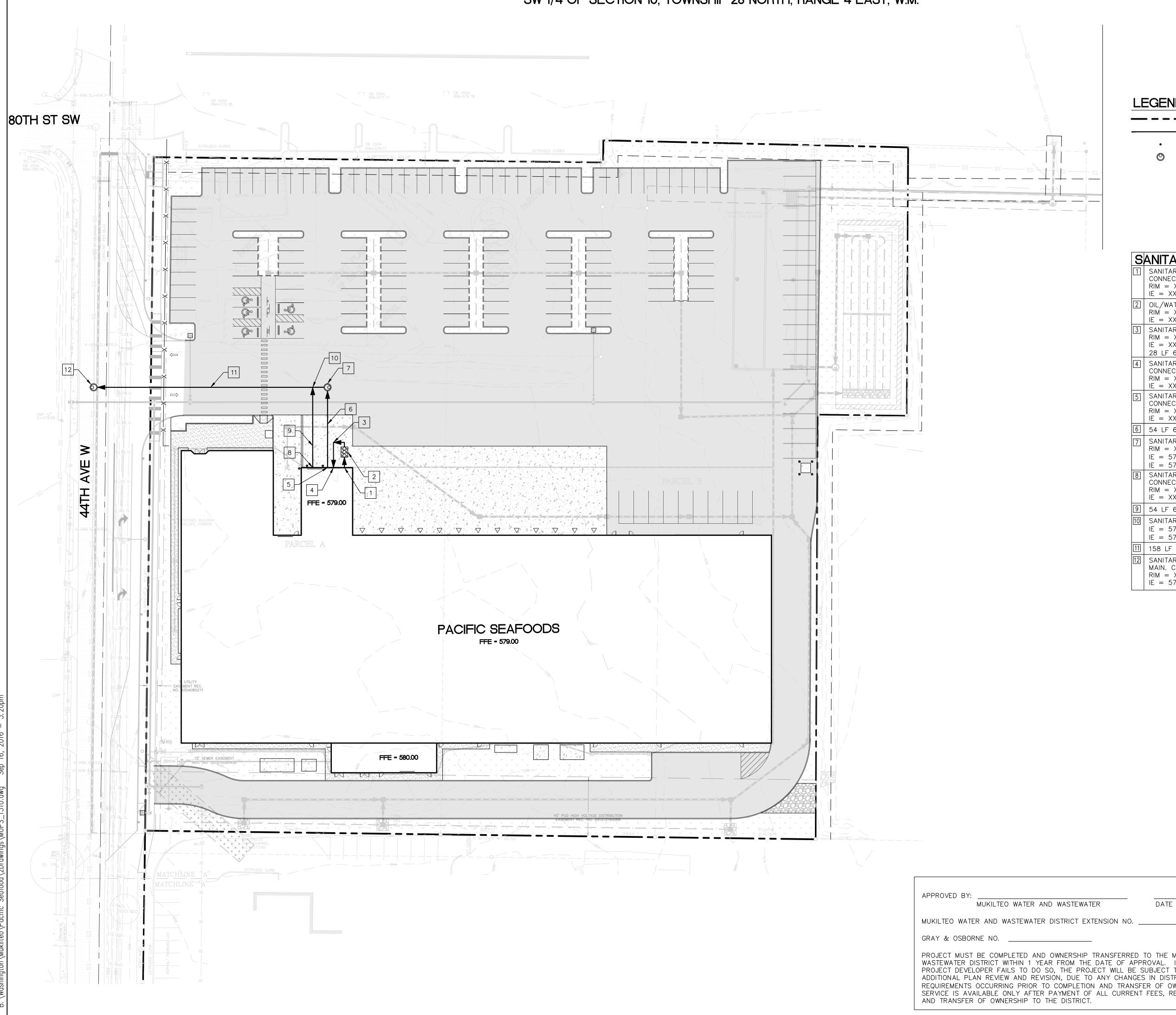
4

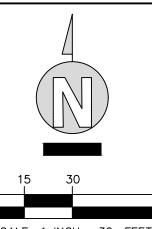

STORM DRAINAGE NOTES (CITY OF MUKIL


- PRIOR TO ANY SITE WORK INCLUDING DRAINAGE, THE CON SCHEDULE A PRE-CONSTRUCTION CONFERENCE.
- 2. ALL PIPE SHALL BE PLACED ON STABLE EARTH. IF IN THE SHALL BE EXCAVATED BELOW GRADE AND BACKFILLED WIT
- 3. BACKFILL SHALL BE PLACED EQUALLY ON BOTH SIDES OF EXCEED 9". EACH LIFT SHALL BE THOROUGHLY COMPACTE THE SIDE OF THE TRENCH. BACKFILL OVER THE PIPE SHA OF THE WSDOT STANDARD SPECIFICATIONS FOR ROAD, BR
- 4. ALL GRATES LOCATED IN THE GUTTER FLOW LINE (INLET
- 5. ALL CATCH BASINS ARE TO BE TYPE I UNLESS OTHERWISE INLETS IS NOT ENCOURAGED.
- 6. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ADJUSTING INSTALLATION AND/OR PAVING.
- 7. ALL CATCH BASINS WITH A DEPTH OF 5 FEET OR GREATE
- VANED GRATES ARE REQUIRED ON ALL STORM STRUCTURI 8. APPROVED FOR USE.
- POLYPROPYLENE SAFETY STEPS AND LADDER STEPS SHAL 9. THE RIM.
- 10. CATCH BASIN FRAMES AND GRATES SHALL BE OLYMPIC F REFERRED TO AS A "THROUGH CURB INLET" ON THE PLANS
- 11. DETENTION PONDS WITH SIDE SLOPES STEEPER THAN 3:1 COATED CHAIN LINK PERIMETER FENCE PER STANDARD PL PIPES SHALL HAVE A TRASH RACK INSTALLED AND A MOI
- 12. PRIOR TO SIDEWALK CONSTRUCTION; LOT DRAINAGE SYSTE BE PVC 3034, OR SDR-35. STUBOUTS SHALL BE MARKED INSTALLATIONS SHALL BE SHOWN ON THE AS-BUILT CONS
- 13. STORM WATER RETENTION/DETENTION FACILITIES, STORM CITY OF MUKILTEO FINAL ACCEPTANCE OF THE PROJECT DRAINAGE SYSTEM.
- 14. UNLESS OTHERWISE NOTED, ALL STORM SEWER PIPE SHAL PIPE DIAMETERS 24"OR GREATER, ASTM C-76; OR (CMP) BETTER; OR CORRUGATED ALUMINUM; OR AASHTO M274-MANUFACTURER'S RECOMMENDATIONS. COVERAGE REQUIREMENTS FOR 12" DIAMETER PIPE: BACKFILL OVER PIPE LESS THAN 12" REQUIRES RCP CLASS BACKFILL OVER PIPE LESS THAN 24" REQUIRES RCP MINIM BACKFILL OVER PIPE GREATER THAN 24" REQUIRES 16 GAG
- 15. CORRUGATED POLYETHYLENE PIPE (CPP):
 - A. ALL PIPE SHALL BE SMOOTH INTERIOR. CPP SHALL BE B. UPON REQUEST BY THE CITY INSPECTOR, ALL PIPE RUN WSDOT STANDARD SPECIFICATIONS FOR ROAD, BRIDGE, FINISH GRADE. C. UPON REQUEST BY THE CITY INSPECTOR, PIPE SHALL
- D. PIPE SHALL BE STORED ON SITE IN SHIPPING BUNKS (RESULT IN REJECTION OF THE PIPE AND/OR FUTURE RE E. MINIMUM DEPTH OF COVER SHALL BE 2 FEET.
- F. COUPLINGS SHALL BE INTEGRAL BELL AND SPIGOT OR G. BACKFILL SHALL COMPLY WITH SECTION 7-08.3(3) OF FOLLOWS: THE SECOND PARAGRAPH OF SECTION 7-08. AND TO A POINT 1 FOOT ABOVE THE TOP OF THE PIPE BACKFILL SHALL PASS THROUGH A 1 INCH SIEVE.
- 16. ALL NON-PERFORATED METAL PIPE SHALL HAVE NEOPREN
- 17. CULVERT ENDS SHALL BE BEVELED TO MATCH SIDE SLOPE DESIGNATED REPRESENTATIVE.
- 18. ALL FIELD CUT CULVERT PIPE SHALL BE TREATED AS REQ

<text></text>		
<text></text>	TEO)	
<text></text>		
<text></text>	D. COMPACTED LIFTS MUST EXTEND AT LEAST ONE PIPE DIAMETER ON EACH SIDE OF THE PIPE OR TO LL BE PERFORMED IN ACCORDANCE WITH SECTIONS 7-04.3(3) AND 2-03.2(14)C - METHOD B AND C	
<text></text>		à
	G ALL MANHOLE, INLET AND CATCH BASIN FRAMES AND GRATES TO GRADE JUST PRIOR TO CURB	0
<text></text>		
<text></text>		2
<text></text>		Date:
	S. OR WITH A MAXIMUM WATER DEPTH GREATER THAN 3 FEET SHALL REQUIRE A POWDER OR VINYL	lssue D
	RTARED RIPRAP HEADWALL. REFER TO STORM DRAINAGE NOTE 18.	<u></u>
) WITH A 2"X 4" WITH 3 FEET VISIBLE ABOVE GRADE AND MARKED "STORM". LOCATIONS OF THESE	Ä
		Designed
<text></text>	CORRUGATED METAL. CMP TO BE; GALVANIZED STEEL WITH TREATMENT I ASPHALT COATING OR	
	IUM.	
	NS SHALL PASS THE LOW PRESSURE AIR TEST REQUIREMENTS OF SECTION 7-04.3(1) E & F OF THE	
	N A FLAT LEVEL SURFACE. THIS RÈQUIREMENT WILL BE STRICTLY ENFORCED; FAILURE TO COMPLY MAY	
<complex-block></complex-block>	THE WSDOT STANDARD SPECIFICATIONS FOR ROAD, BRIDGE, AND MUNICIPAL CONSTRUCTION MODIFIED AS .3(3) IS DELETED AND REPLACED WITH THE FOLLOWING: THE MATERIAL USED FOR BACKFILLING AROUND	
Image: Starting in the control of t	BASIN WITH PEDESTRIAN GRATE	
MYRGHTS, THE RECEIPT NT DOES NOT CONFER, ISE OF THE DESIGN OR OWN HEREIN TT OR BAY INFORMATION JFACTURE OF ANY USE OF THE DESIGN OR OWN HEREIN TT OR ANY INFORMATION JFACTURE OF ANY USE OF THE DESIGN OR OWN HEREIN DATE 4-25-13 DATE 4-20-07 PVC Image: Construction of the state of t	FOR GUIDELINE PURPOSES ONLY. ACTUAL CONCRETE SLAB MUST MAGLES VARIABLE 0"-380" ACCORDING TO PLANS	
Call before you dig	MY RIGHTS. THE RECEIPT NT DOES NOT CONFER, JSE OF THE DESIGN OR DWN HEREIN IT OR ANY INFORMATION JFACTURE OF ANY USE OF THE DESIGN OR DWN HEREIN IT OR ANY INFORMATION JFACTURE OF ANY USE OF THE DESIGN OR DWN HEREIN IT OR ANY INFORMATION JFACTURE OF ANY USE OF UNCELLAST DATE PVC DUFORD, GA 30518 PHN (770) 932-2440 www.mydoplast-us.com DRAIN BASIN WITH PEDESTRIAN GRATE OUICK SPEC INSTALLATION DETAIL DRAIN BASIN WITH PEDESTRIAN GRATE OUICK SPEC INSTALLATION DETAIL DRAIN BASIN WITH PEDESTRIAN GRATE OUICK SPEC INSTALLATION DETAIL DRAIN NTS DRAIN SCALE 1440 SHEET 1 OF 1 DWG NO. 7001-110-283 REV C	






Ż	Designed By: Issue Date: No. Date By Revision Description	JWT/SNG/TVW 09/16/2016	Drawn By:	SNG/TVW PERMIT	Checked By: Project No.	5/2016 JJV 50530001
					t: 425.453.9501	f: 425.453.8208 wa 98004 www navixeng com
			8007 44TH AVE W	MUKILTEO, WA 98274		

WASTEWATER	DATE
STRICT EXTENSION NO.	
	THE MUKILTEO WATER AND

SCALE: 1 INCH = 30 FEET

LEGEND: ____

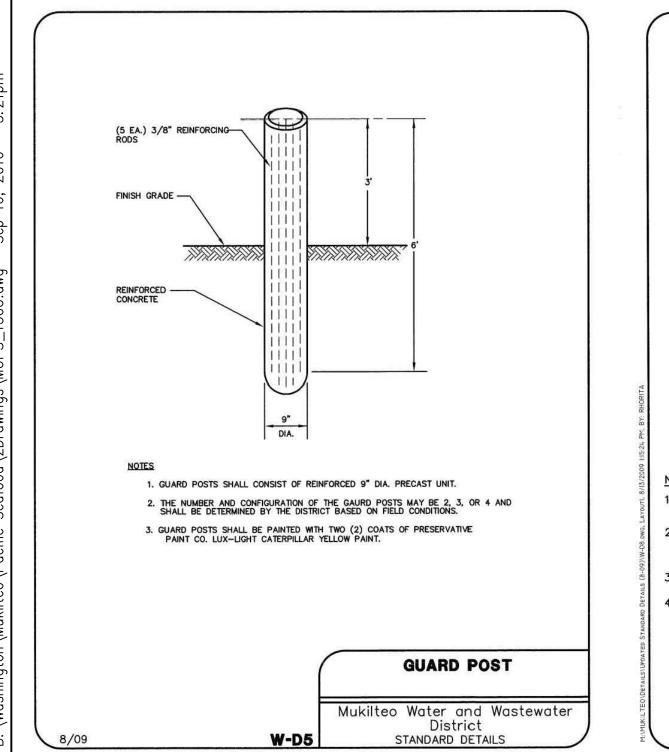
0

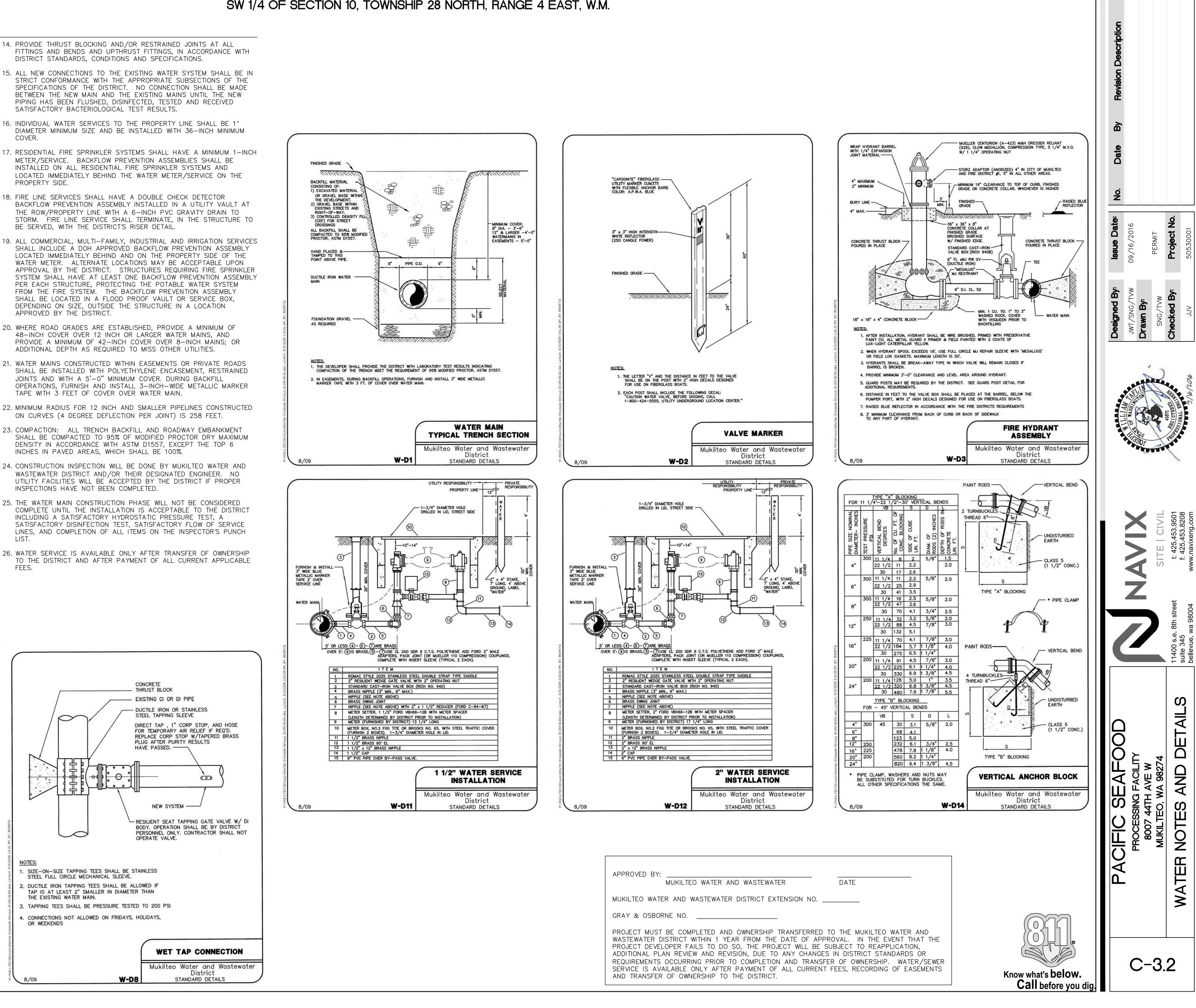
PROPERTY BOUNDARY SANITARY SEWER PIPE SANITARY SEWER CLEANOUT SANITARY SEWER MANHOLE SANITARY SEWER OIL/WATER SEPARATOR

S	ANITARY SEWER SCHEDULE
1	SANITARY SEWER CLEANOUT CONNECT TO BUILDING PLUMBING RIM = XXX.XX IE = XXX.XX
2	OIL/WATER SEPARATOR RIM = XXX.XX IE = XXX.XX
3	SANITARY SEWER CLEANOUT RIM = XXX.XX IE = XXX.XX 28 LF 6" PVC SDR 35 WW @ 2.00% MIN.
4	SANITARY SEWER CLEANOUT CONNECT TO BUILDING PLUMBING RIM = XXX.XX IE = XXX.XX
5	SANITARY SEWER CLEANOUT CONNECT TO BUILDING PLUMBING RIM = XXX.XX IE = XXX.XX
6	54 LF 6" PVC SDR 35 WW @ 2.00% MIN.
7	SANITARY SEWER MH RIM = XXX.XX IE = 573.45 (IN) IE = 573.35 (OUT)
8	SANITARY SEWER CLEANOUT CONNECT TO BUILDING PLUMBING RIM = XXX.XX IE = XXX.XX
9	54 LF 6" PVC SDR 35 WW @ 2.00% MIN.
10	SANITARY SEWER WYE IE = 573.25 (8") IE = 573.33 (6")
11	158 LF 8" PVC SDR 35 WW @ 1.00%
12	SANITARY SEWER MH-SADDLE AT EXISTING MAIN. CONTRACTOR TO FIELD VERIFY RIM = XXX.XX IE = $571.77\pm$

DATE

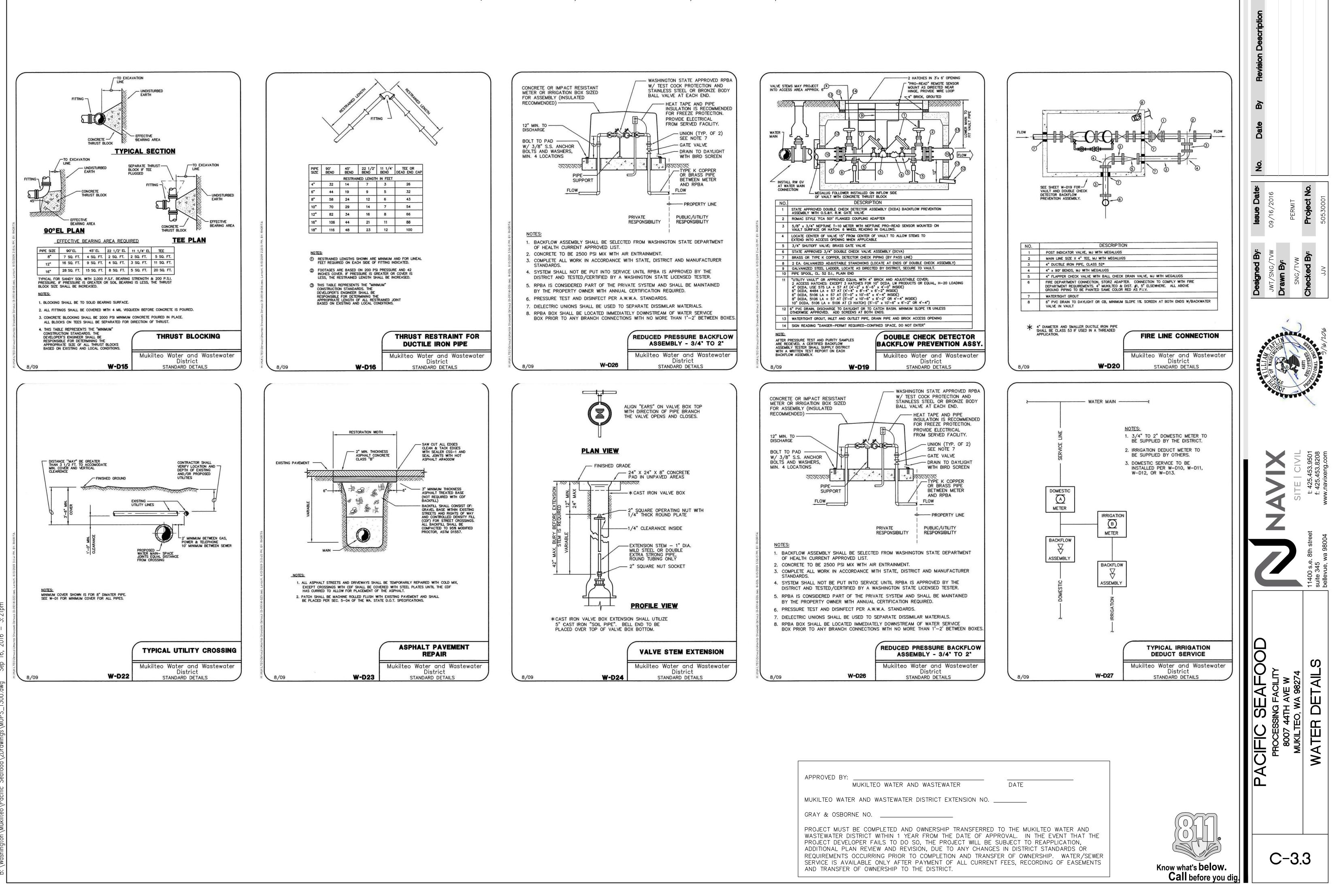
PROJECT MUST BE COMPLETED AND OWNERSHIP TRANSFERRED TO THE MUKILTEO WATER AND WASTEWATER DISTRICT WITHIN 1 YEAR FROM THE DATE OF APPROVAL. IN THE EVENT THAT THE PROJECT DEVELOPER FAILS TO DO SO, THE PROJECT WILL BE SUBJECT TO REAPPLICATION, ADDITIONAL PLAN REVIEW AND REVISION, DUE TO ANY CHANGES IN DISTRICT STANDARDS OR REQUIREMENTS OCCURRING PRIOR TO COMPLETION AND TRANSFER OF OWNERSHIP. WATER/SEWER SERVICE IS AVAILABLE ONLY AFTER PAYMENT OF ALL CURRENT FEES, RECORDING OF EASEMENTS


Know what's **below. Call** before you dig.


No. Date By Revision Description					
Issue Date:	09/16/2016		PERMIT	Project No.	50530001
Designed By:	JWT/SNG/TVW	Drawn By:	SNG/TVW	Checked By:	VLL
			SITE CIVIL	. 8th street t: 425.453.9501	suite 345 t: 425.453.8208 bellevue, wa 98004 www.navixeng.com
				11400 s.	suite 345 bellevue,
PACIFIC SEAFOOD		8007 44TH AVE W	MUKILTEO, WA 98274	CEWED DI ANI	
	(-3	└ 1	

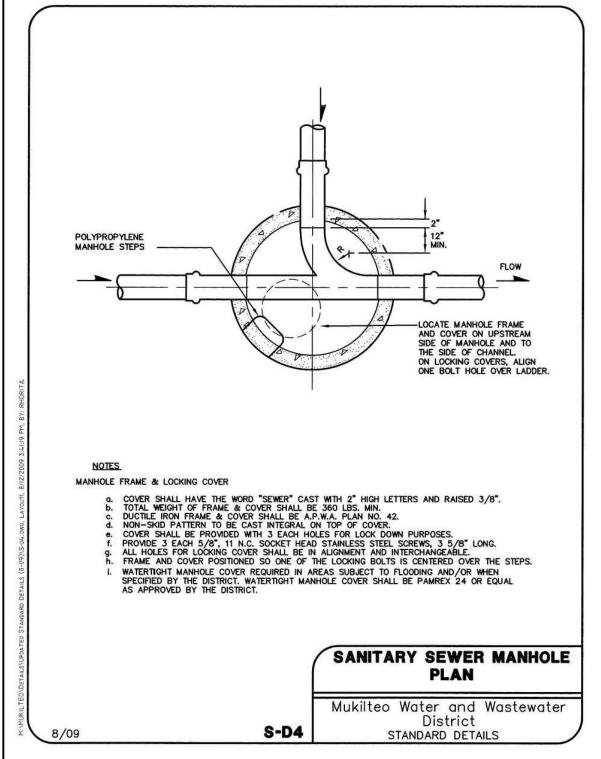
WATER SYSTEM INSTALLATION NOTES

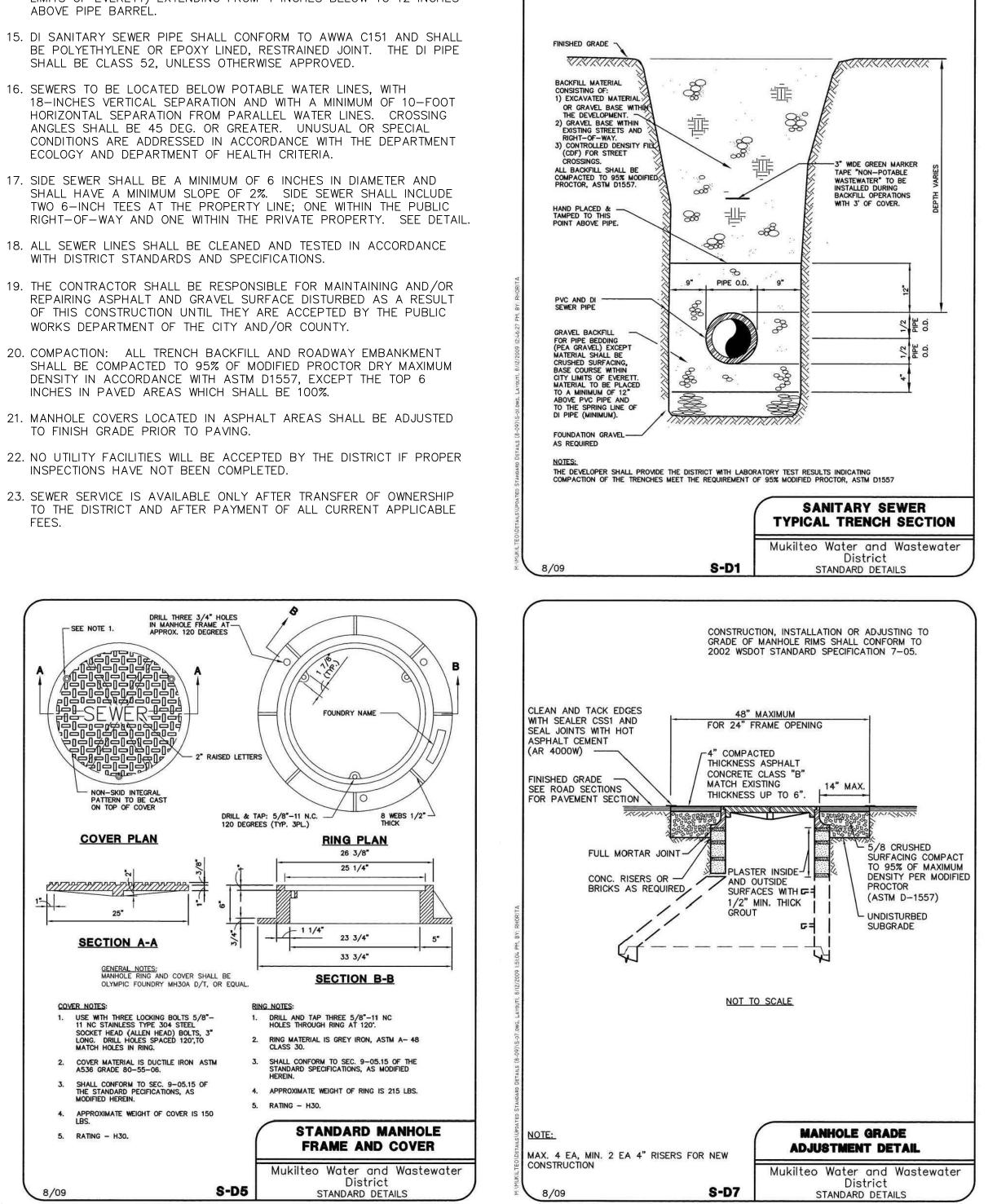
- 1. PRIOR TO ANY CONSTRUCTION ACTIVITY. THE DEVELOPER SHALL ARRANGE A PRE-CONSTRUCTION CONFERENCE WITH THE MUKILTEO WATER AND WASTEWATER DISTRICT. THE DEVELOPER, CONTRACTOR AND PROPOSED ON-SITE SUPERVISORS SHALL ATTEND.
- 2. ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH THE LATEST REVISION, INCLUDING ADDENDA AND UPDATES, OF THE MUKILTEO WATER AND WASTEWATER DISTRICT DEVELOPER STANDARDS. CONTRACTOR TO HAVE MUKILTEO WATER AND WASTEWATER DISTRICT STANDARDS ON JOB SITE.
- 3. NO DISTRICT INSPECTIONS WILL TAKE PLACE AND THE JOB WILL BE SHUT DOWN UNLESS AN APPROVED AND DISTRICT SIGNED COPY OF THESE PLANS ARE ON THE JOB SITE AT ALL TIMES CONSTRUCTION IS IN PROGRESS.
- 4. ALL WATER SYSTEM IMPROVEMENTS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THESE APPROVED PLANS. ANY DEVIATION FROM THE PLANS WILL REQUIRE APPROVAL FROM THE OWNER, ENGINEER, DISTRICT AND APPROPRIATE PUBLIC AGENCIES.
- 5. NOTIFY THE DISTRICT 72 HOURS (3 WORKING DAYS) PRIOR TO BEGINNING CONSTRUCTION AND FOR ANY RESTARTS OF WORK.
- 6. THE DISTRICT SHALL BE NOTIFIED THREE WORKING DAYS PRIOR TO THE TIME THE DEVELOPER WOULD LIKE TO CONNECT TO EXISTING MAINS OR FOR INSTALLATION OF TAPPING TEES. THE CONNECTION SHALL BE DONE IN ACCORDANCE WITH DISTRICT REQUIREMENTS. CONNECTIONS TO TAKE PLACE TUESDAYS THROUGH THURSDAYS ONLY. DEVELOPER SHALL NOT OPERATE ANY DISTRICT VALVES: THESE WILL BE OPERATED BY WATER DISTRICT PERSONNEL ONLY.
- 7. FOR AID IN UTILITY LOCATION, CALL 1-800-424-5555, A MINIMUM OF 48 HOURS (2 WORKING PRIOR TO BEGINNING OF CONSTRUCTION. EXISTING UTILITIES, WHETHER SHOWN OR NOT, SHALL BE LOCATED PRIOR TO CONSTRUCTION, SO AS TO AVOID DAMAGE OR DISTURBANCE, AND THE DEVELOPER SHALL ASSUME ALL RESPONSIBILITY AND COSTS CONNECTED THEREWITH TO PROTECT, MAINTAIN AND REPAIR, WHERE NECESSARY.
- 8. WATER LINE CONSTRUCTION WITHIN THE PROPOSED DEVELOPMENT SHALL NOT COMMENCE UNTIL THE STREET HAS BEEN BROUGHT TO SUB-GRADE, MEETING MUKILTEO WATER DISTRICT APPROVAL.
- 9. WATER MAIN SHALL BE FIELD STAKED PRIOR TO CONSTRUCTION, WITH 25-FOOT STAKES ON LOT CORNER STAKES SHALL ALSO BE IN PLACE PRIOR TO CONSTRUCTION.
- 10. PIPE SHALL BE DUCTILE IRON, AWWA CLASS 52 THICKNESS, WITH RUBBER GASKETS, PUSHON TYPE, OR MECHANICAL JOINT, MEETING AWWA SPECIFICATIONS. FITTINGS SHALL BE AWWA, CEMENT LINED, DUCTILE IRON, AND EITHER MECHANICAL JOINT OR FLANGED, AS INDICATED HEREIN. ALL PIPE TO BE PURCHASED AND INSTALLED AS A PART OF THE DEVELOPERS WATER SYSTEM SHALL BE DELIVERED TO THE JOB SITE WITH WATER TIGHT WRAPPING OR PIPE PLUGS. PLUGS AND/OR WRAPPING SHALL REMAIN IN PLACE UNTIL THE PIPE IS INSTALLED IN THE TRENCH.
- 11. UNLESS OTHERWISE SPECIFIED VALVES 12 INCH AND SMALLER SHALL BE DUCTILE IRON RESILIENT SEATED GATE VALVES: ACCEPTABLE VALVES ARE MUELLER, CLOW, M&H, U.S. PIPE AND AMERICAN FLOW CONTROL, SERIES 2500. VALVES LARGER THAN 12 INCHES SHALL BE DUCTILE IRON BUTTERFLY VALVES; ACCEPTABLE VALVES ARE PRATT GROUNDHOG AND DRESSER 450.
- 12. ALL BOLTS ON WATER WORKS FITTINGS SHALL BE COATED WITH ARMITE ANTI-SEIZE COMPOUND NO. 609, OR EQUAL, PRIOR TO INSTALLATION. ALL WATER WORKS FITTINGS AND BOLTED ASSEMBLIES SHALL BE COMPLETELY COVERED WITH VISQUEEN PLASTIC, 4 MIL. THE END OF THE PLASTIC SHALL BE TAPED TO SECURE THEM TO THE PIPE.
- 13. HYDRANTS SHALL BE MUELLER CENTURION A-423. CLOW MEDALLION. OR DRESSER RELIANT 929 MEETING AWWA SPECIFICATIONS. HYDRANTS SHALL BE FURNISHED WITH THREADED OUTLETS, MEETING FIRE DISTRICT/DEPARTMENT STANDARDS. BOTH THRUST BLOCKING AND MEGA LÚGS RESTRAINTS ARE REQUIRED ON EACH HYDRANT INSTALLATION.
 - HYDRANTS WITHIN THE CITY OF MUKILTEO FIRE SERVICE AREA AND FIRE DISTRICT #1 SHALL BE EQUIPPED WITH 4-INCH STORZ ADAPTERS; ALL OTHER HYDRANTS SHALL UTILIZE A 5-INCH STORZ ADAPTER. ALL HYDRANTS SHALL HAVE A 4-1/-INCH NST THREADS ON PUMPER PORT.


- DISTRICT STANDARDS, CONDITIONS AND SPECIFICATIONS.
- SATISFACTORY BACTERIOLOGICAL TEST RESULTS.
- COVER.
- PROPERTY SIDE.
- BE SERVED, WITH THE DISTRICT'S RISER DETAIL.
- APPROVED BY THE DISTRICT.
- TAPE WITH 3 FEET OF COVER OVER WATER MAIN.
- INCHES IN PAVED AREAS, WHICH SHALL BE 100%.
- INSPECTIONS HAVE NOT BEEN COMPLETED.
- LIST.
- FEES.

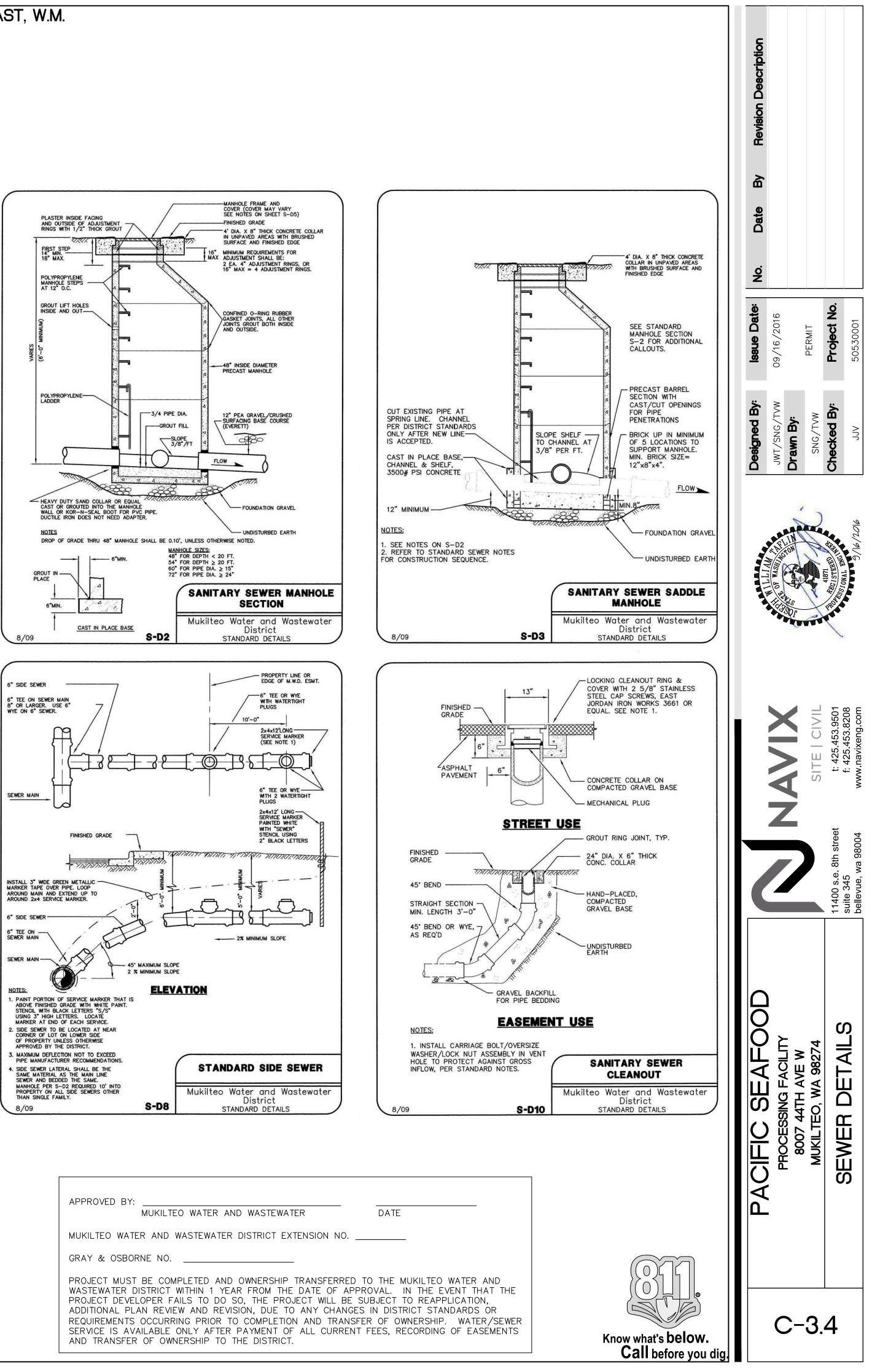
SW 1/4 OF SECTION 10, TOWNSHIP 28 NORTH, RANGE 4 EAST, W.M.

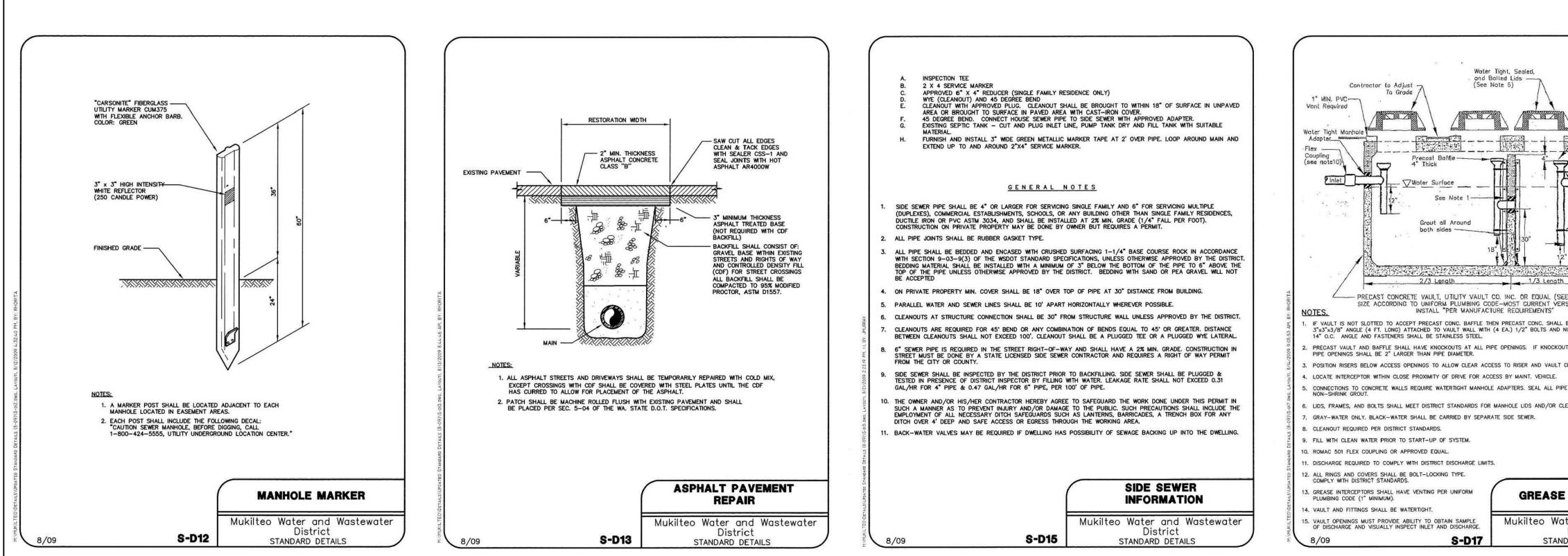
ONN	ECTION
and strict	Wastewate
D DETA	AILS

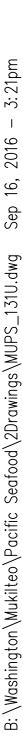

APPROVED BY:
MUKILTEO WATER AND
MUKILTEO WATER AND WASTEWATER DIS
GRAY & OSBORNE NO.
PROJECT MUST BE COMPLETED AND OW WASTEWATER DISTRICT WITHIN 1 YEAR F PROJECT DEVELOPER FAILS TO DO SO, ADDITIONAL PLAN REVIEW AND REVISION REQUIREMENTS OCCURRING PRIOR TO C


SEWER SYSTEM INSTALLATION NOTES

- 1. PRIOR TO ANY CONSTRUCTION ACTIVITY, THE DEVELOPER SHALL ARRANGE A PRE-CONSTRUCTION CONFERENCE WITH THE MUKILTEO WATER AND WASTEWATER DISTRICT. THE DEVELOPER, CONTRACTOR AND PROPOSED ON-SITE SUPERVISOR SHALL ATTEND.
- 2. ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH THE LATEST REVISION, INCLUDING ADDENDA AND UPDATES, OF THE MUKILTEO WATER AND WASTEWATER DISTRICT DEVELOPER STANDARDS. CONTRACTOR TO HAVE MUKILTEO WATER AND WASTEWATER DISTRICT STANDARDS ON JOB SITE AT ALL TIMES WHILE CONSTRUCTION IS IN PROGRESS.
- 3. A DISTRICT APPROVED SIGNED COPY OF THE PLANS MUST BE ON THE JOB SITE WHENEVER CONSTRUCTION IS IN PROGRESS.
- 4. ALL WORK AND MATERIAL SHALL BE IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND SPECIFICATIONS OF THE DISTRICT, THE PROJECT SPECIFICATIONS, AND THE MOST RECENT EDITION OF THE APWA STANDARDS AND SPECIFICATIONS.
- 5. WORK SHALL NOT COMMENCE UNTIL APPROVAL IS RECEIVED FROM THE STATE DEPARTMENT OF ECOLOGY, UNLESS THE REVIEW AND APPROVAL IS WAIVED BY ECOLOGY.
- 6. FRONT PROPERTY CORNERS SHALL BE SET BY A LAND SURVEYOR LICENSED IN THE STATE OF WASHINGTON PRIOR TO THE START OF CONSTRUCTION.
- 7. NOTIFY THE DISTRICT 72 HOURS (3 WORKING DAYS) PRIOR TO BEGINNING CONSTRUCTION AND FOR ANY RESTARTS OF WORK.
- 8. FOR AID IN UTILITY LOCATION, CALL 1-800-424-555, A MINIMUM OF 48 HOURS (2 WORKING PRIOR TO BEGINNING OF CONSTRUCTION EXISTING UTILITIES, WHETHER SHOWN OR NOT, SHALL BE LOCATED PRIOR TO CONSTRUCTION, SO AS TO AVOID DAMAGE OR DISTURBANCE, AND THE DEVELOPER SHALL ASSUME ALL RESPONSIBILITY AND COSTS CONNECTED THEREWITH TO PROTECT, MAINTAIN AND REPAIR, WHERE NECESSARY.
- 9. PIPE LENGTHS, MANHOLE DEPTHS, ETC., AS SHOWN ARE APPROXIMATE. DEVELOPER IS RESPONSIBLE FOR SUPPLYING PROPER QUANTITIES OF MATERIALS.
- 10. PROVIDE THE DISTRICT'S INSPECTOR WITH A COPY OF ALL CUT SHEETS PRIOR TO CONSTRUCTION.
- 11. PERMANENT ACCESS FOR DISTRICT SERVICE VEHICLES SHALL BE PROVIDED AT ALL MANHOLES. MANHOLES SHALL BE CONSTRUCTED AS PER DISTRICT STANDARD DETAILS, INCLUDING CONSTRUCTION OF CHANNELS. WHERE INDICATED, PROVIDE KNOCK-OUTS AND CHANNELIZATION FOR SIDE SEWER OR FUTURE MAINLINE EXTENSIONS; AND FOR PVC PIPE, PROVIDE A WATERTIGHT FLEXIBLE RUBBER BOOT OR HEAVY DUTY SAND COLLAR. PROVIDE LOCKING LIDS FOR MANHOLE COVERS.


- 12. CONNECTION TO EXISTING MAIN SHALL BE DONE SO AS TO PREVENT ANY FOREIGN MATERIALS FROM ENTERING EXISTING SEWERS. EXISTING PIPE IN SADDLE MANHOLE INSTALLATIONS SHALL NOT BE CUT OR REMOVED UNTIL INSTRUCTED TO DO SO BY THE DISTRICT.
- 13. CONNECTION TO EXISTING MANHOLES SHALL BE MADE BY UTILIZATION OF A CONCRETE COREDRILLING MACHINE OF ADEQUATE DIAMETER TO GROUT IN PLACE AN ADAPTER IF PVC SEWER LINES ARE INSTALLED. ALIGN CORE-DRILLING MACHINE TO PROVIDE MINIMUM OF 0.10-FOOT DROP ACROSS THE MANHOLE.
- 14. PVC PIPE SHALL BE SDR-35 ASTM D3034 FURNISHED IN 13-FOOT MAXIMUM LENGTHS AND SHALL BE FULLY ENCASED IN PEA GRAVEL (OR CRUSHED ROCK, BASE COURSE, IF INSTALLED WITHIN THE CITY LIMITS OF EVERETT) EXTENDING FROM 4 INCHES BELOW TO 12 INCHES ABOVE PIPE BARREL.
- ECOLOGY AND DEPARTMENT OF HEALTH CRITERIA.
- WITH DISTRICT STANDARDS AND SPECIFICATIONS.


- TO FINISH GRADE PRIOR TO PAVING.
- INSPECTIONS HAVE NOT BEEN COMPLETED.
- FEES.



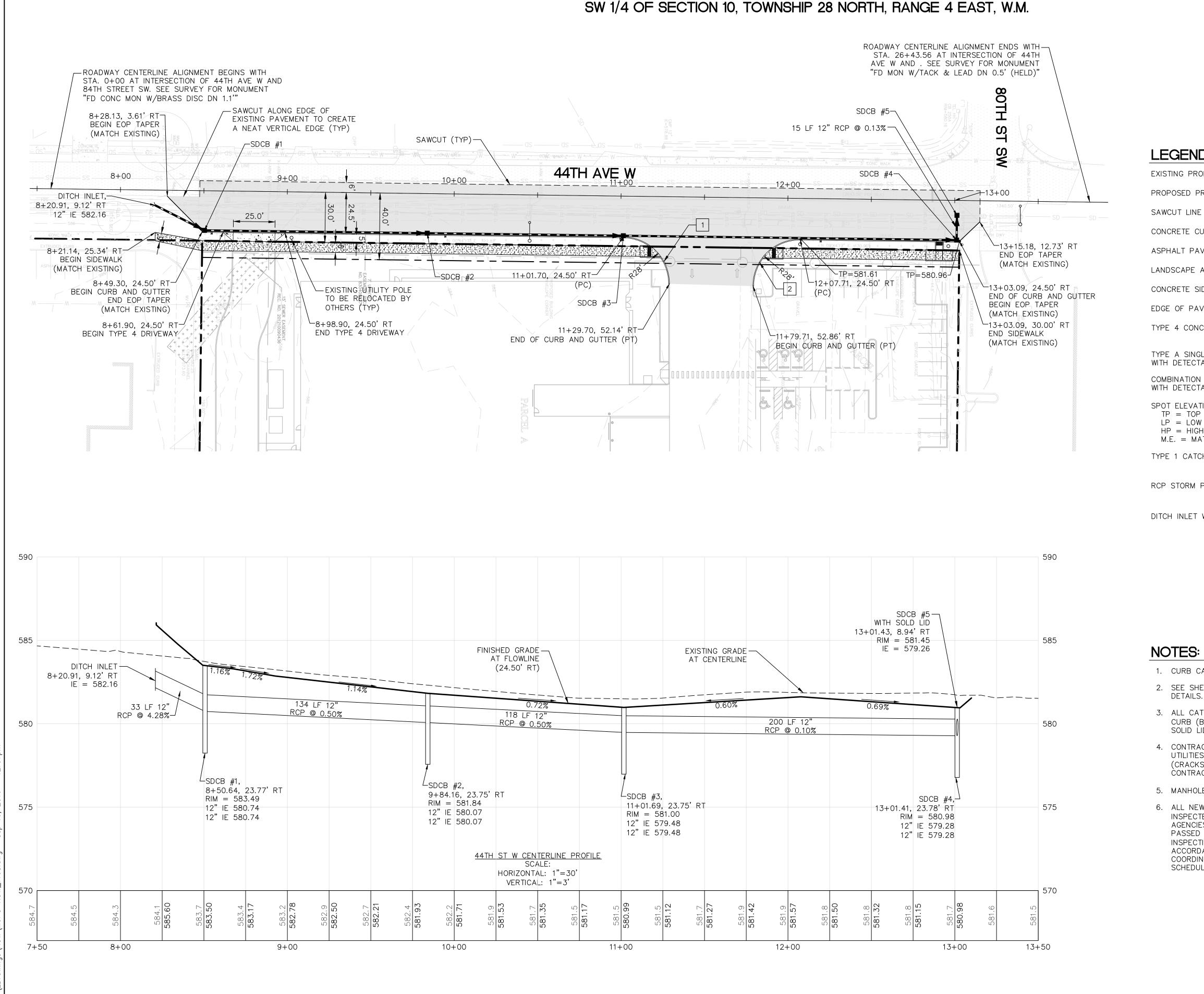
APPROVED	BY:				
		MUKILTEO	WATER	AND	WASTEWATER

MUKILTEO WATER AND WASTEWATER DISTRICT EXTENSION NO.

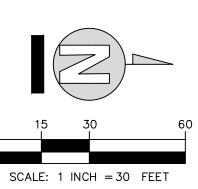
GRAY & OSBORNE NO.

PROJECT MUST BE COMPLETED AND OWNERSHIP TRANSFERRED TO THE MUKILTEO WATER AND WASTEWATER DISTRICT WITHIN 1 YEAR FROM THE DATE OF APPROVAL. IN THE EVENT THAT THE PROJECT DEVELOPER FAILS TO DO SO, THE PROJECT WILL BE SUBJECT TO REAPPLICATION, ADDITIONAL PLAN REVIEW AND REVISION, DUE TO ANY CHANGES IN DISTRICT STANDARDS OR REQUIREMENTS OCCURRING PRIOR TO COMPLETION AND TRANSFER OF OWNERSHIP. WATER/SEWER SERVICE IS AVAILABLE ONLY AFTER PAYMENT OF ALL CURRENT FEES, RECORDING OF EASEMENTS AND TRANSFER OF OWNERSHIP TO THE DISTRICT.

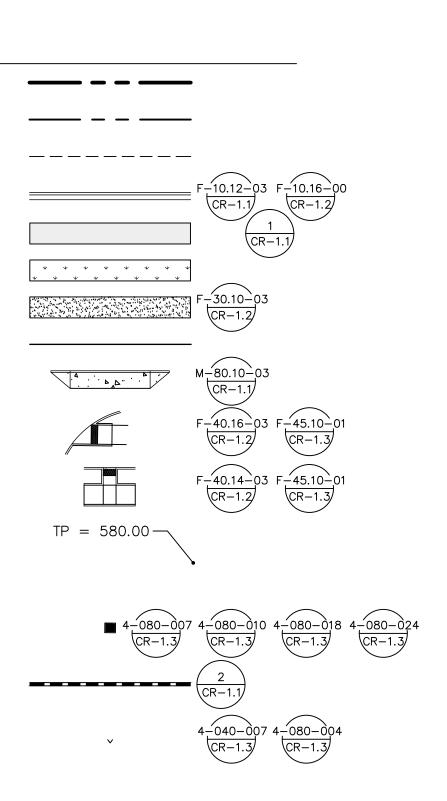
Install Surface Clean—oi Per District Standards	7
/	/
. /	1
1	
oll Risers)	
Outlet	
Coupling	ap
Stoinless Steel Stre and 5/8" Anchor ((Typical)	Bolt
±6" Typicol	
	, e
E NOTE 2)	· · ·
SION	
BE HELD IN PLACE BY (2) NUTS (WITH WASHERS) SPACED	
ITS ARE NOT PRESENT THEN	ţ.
CHAMBER.	
GRANDEN.	-12
E CONNECTIONS WITH	
EANOUTS AS APPLICABLE.	E.
INTERCEPTOR	
ter and Wastewate	er
District DARD DETAILS	

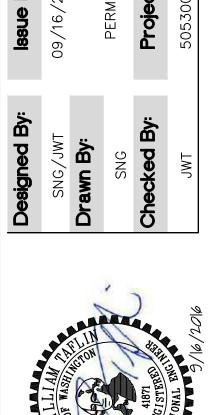

DATE

Know what's **below. Call** before you dig.


No. Date By Revision Description					
Issue Date:	09/16/2016		PERMIT	Project No.	50530001
Designed By:	JWT/SNG/TVW	Drawn By:	SNG/TVW	Checked By:	ЛU
			SITE CIVIL		
			SITE CIVIL	. 8th street	suite 345 f: 425 453 8208 bellevue, wa 98004 www.navixeng.com
PACIFIC SEAFOOD		8007 44TH AVE W	4 SITE		suite 345 bellevue, wa 98004 ww

INTERSECTON CURV	/E
------------------	----


	D. BEGIN STA. OFFSET END STA.		OFFSET	ALL ELEVATIONS ARE TO FLOWLINE				RADIUS	LENGTH			
	NO. BEGIN STA. O	UFFSET END STA.	UFFSEI	BEGIN	1/4∆	1/2Δ	3/4∆	END	RADIUS	LENGIH	DELTA	
1] 11+01.70	24.50'RT	11+29.70	52.14' RT	580.98	581.09	581.26	581.18	580.86	28'	43.62'	90°00'44"
2] 11+79.70	52.86'RT	12+07.70	24.50' RT	580.82	581.20	581.66	581.60	581.62	28'	44.34'	89°00'26"


TABLE

LEGEND:

- EXISTING PROPERTY BOUNDARY
- PROPOSED PROPERTY BOUNDARY
- CONCRETE CURB AND GUTTER
- ASPHALT PAVEMENT
- LANDSCAPE AREA
- CONCRETE SIDEWALK
- EDGE OF PAVEMENT (EOP)
- TYPE 4 CONCRETE DRIVEWAY
- TYPE A SINGLE DIRECTION CURB RAMP WITH DETECTABLE WARNING STRIP
- COMBINATION CURB RAMP WITH DETECTABLE WARNING STRIP
- SPOT ELEVATION: TP = TOP OF PAVEMENTLP = LOW POINTHP = HIGH POINT
- M.E. = MATCH EXISTING
- TYPE 1 CATCH BASIN
- RCP STORM PIPE
- DITCH INLET WITH TRASH RACK

PROFIL

AND

AN

 \succ

ADW.

ВŐ,

S

IMPROVEMENTS
 IMPROVEMENTS
 IC SEAFOODS
 44TH AVE W
 TEO, WA 98274

FIC SEAFOOI 7 44TH AVE V .TEO, WA 982

ACIFI 8007 UKILT

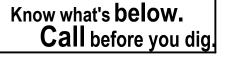
CR-1.0

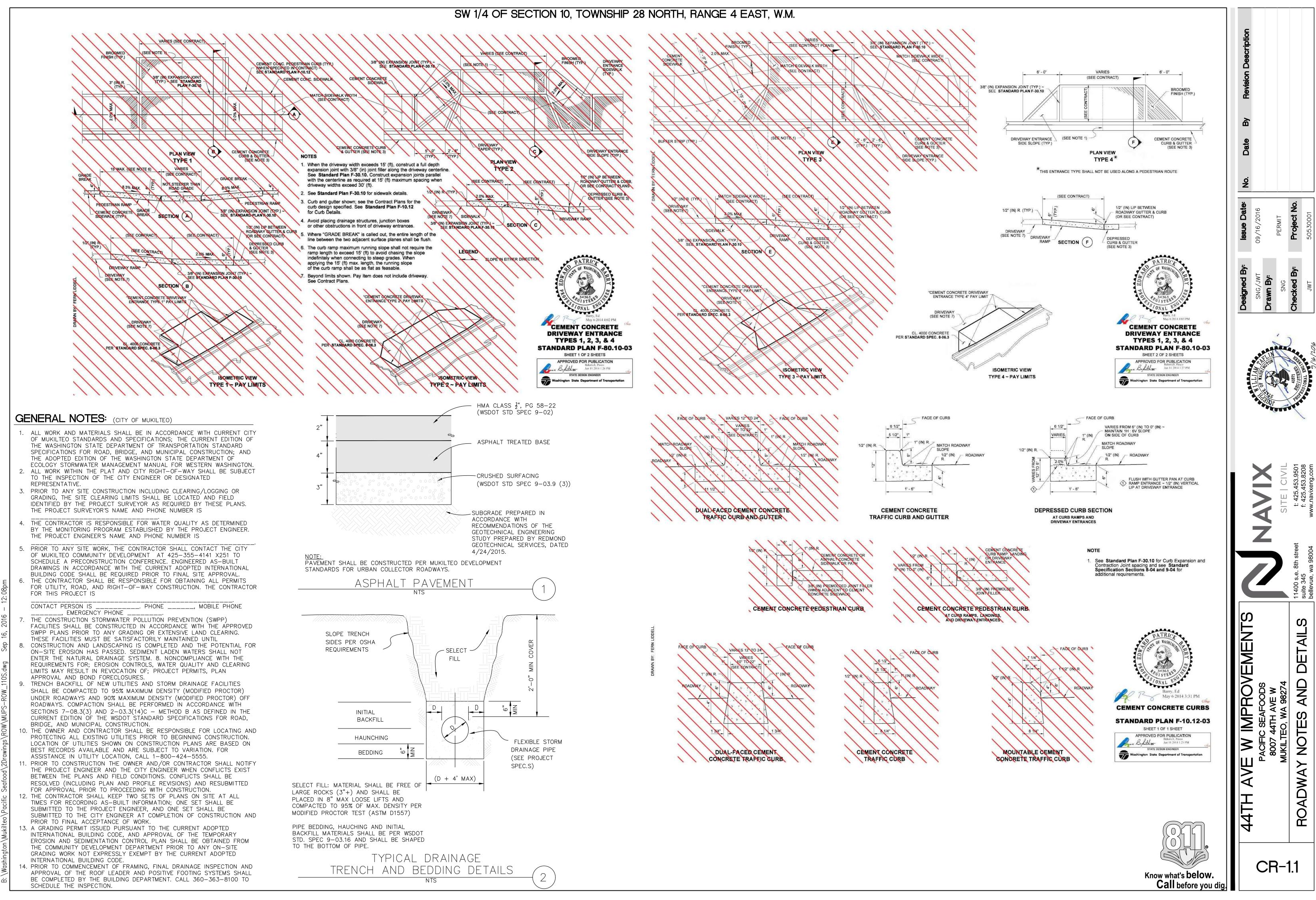
<u>٦</u>

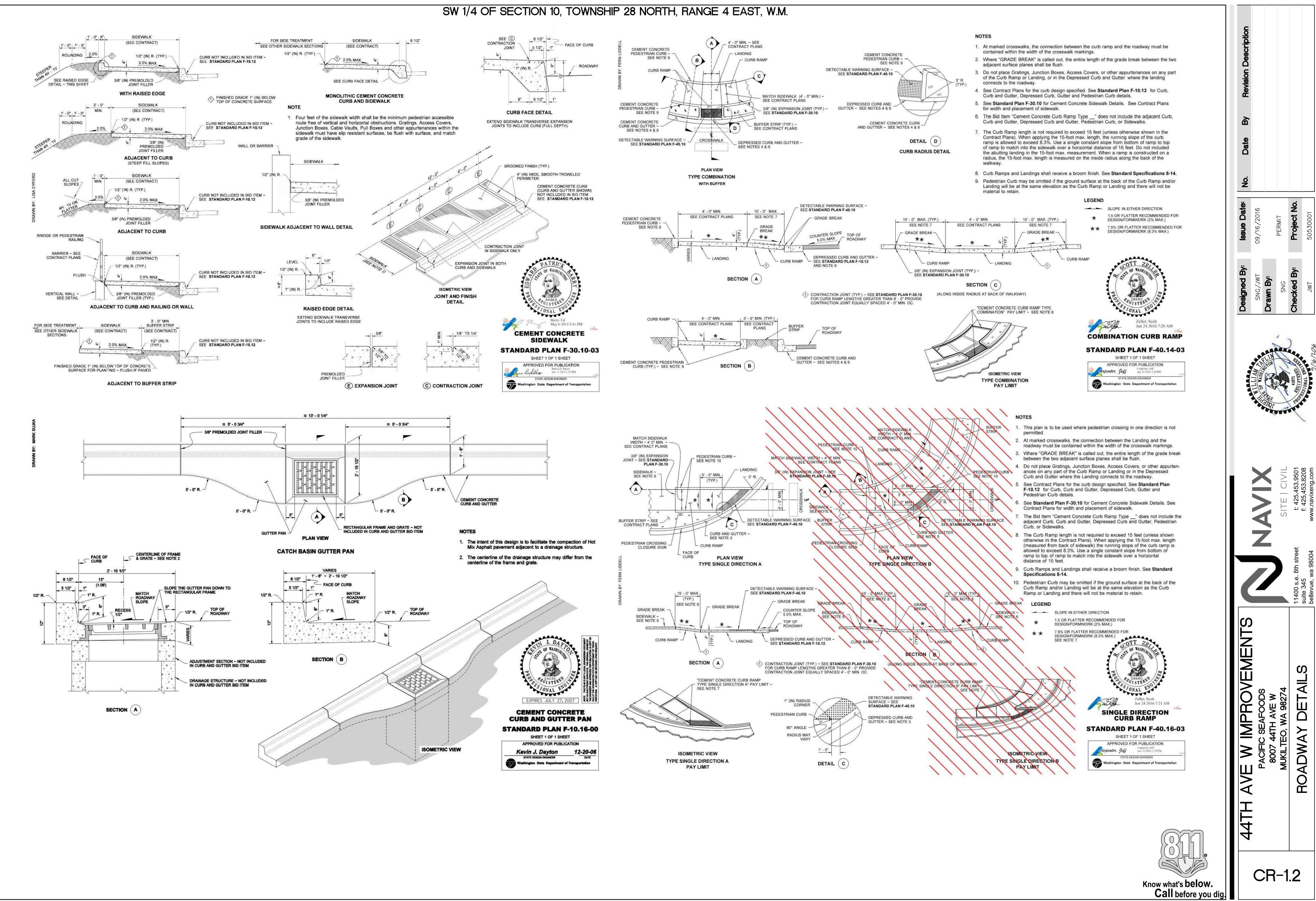
 \geq

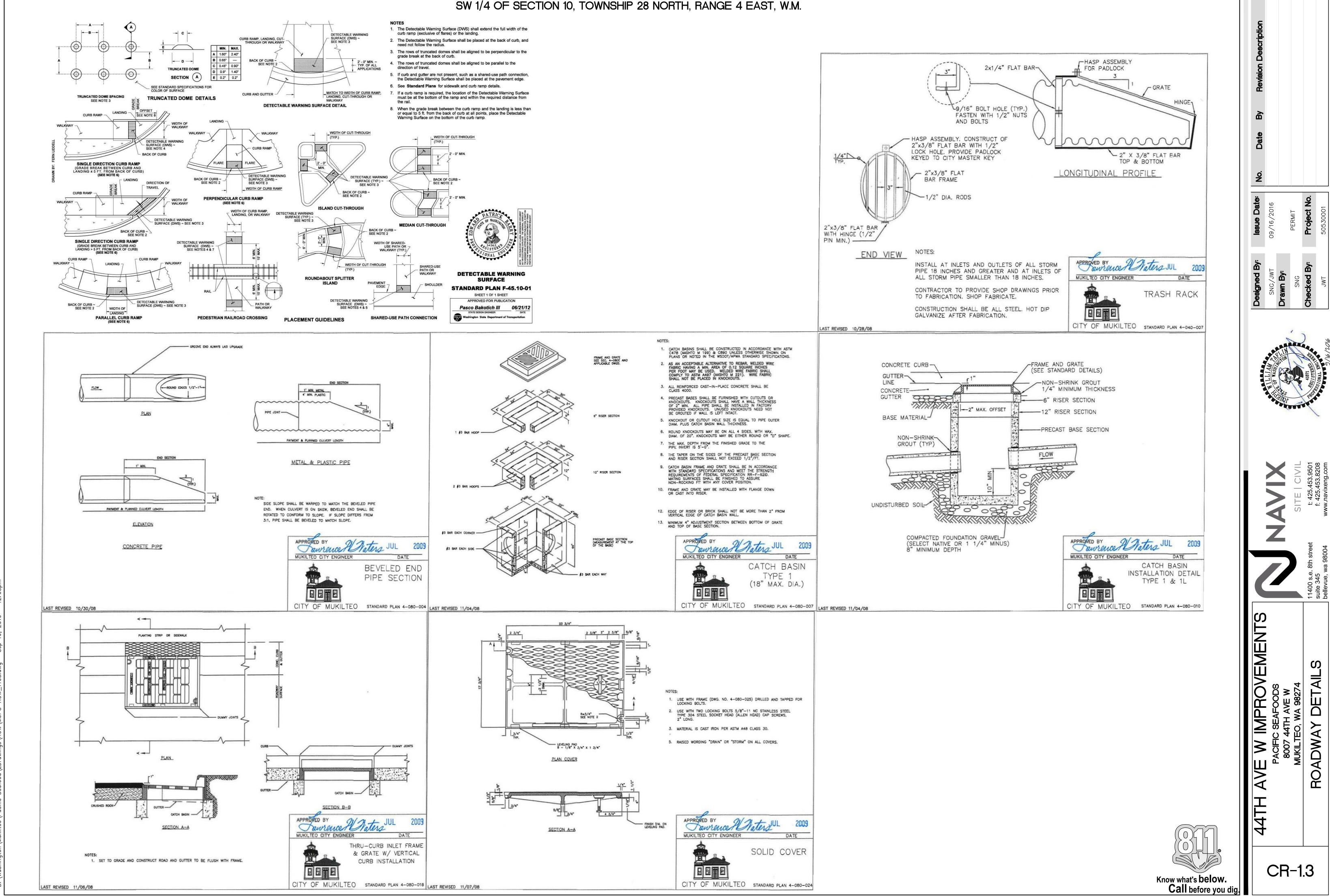
Ш Х

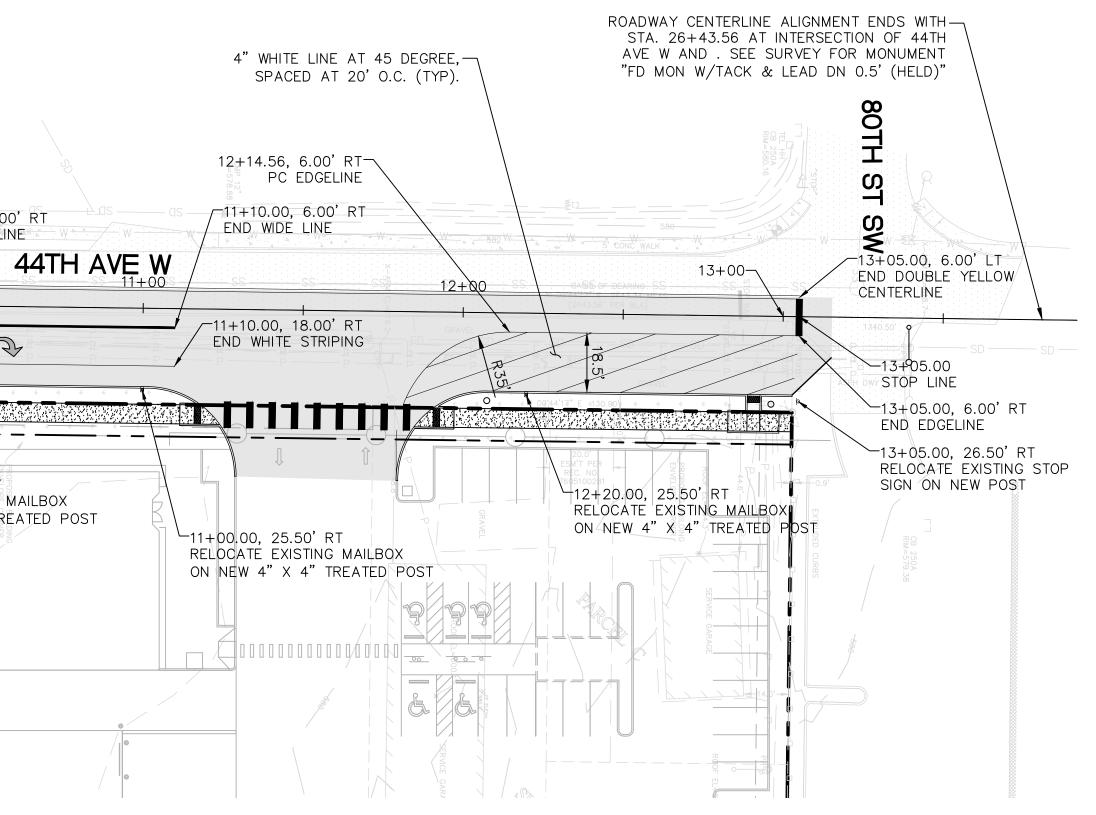
44TH


Š


Ž

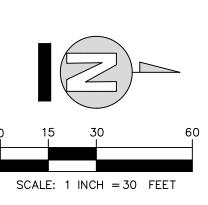

Õ


- 1. CURB CALLOUTS ARE TO FACE OF CURB UNLESS OTHERWISE NOTED. 2. SEE SHEET CR-1.1 AND CR-1.2 FOR ROADWAY AND STORM DRAINAGE DETAILS.
- 3. ALL CATCH BASIN STATIONS AND OFFSETS RELATE TO FLOW LINE, FACE OF CURB (BACK OF RIM) UNLESS OTHERWISE NOTED. PROVIDE CATCH BASIN SOLID LID OR GRATE AS NOTED ON PLANS.
- 4. CONTRACTOR SHALL BE RESPONSIBLE FOR INSPECTING ALL EXISTING UTILITIES TO REMAIN WITHIN THE PROJECT LIMITS FOR DETERIORATION (CRACKS, DENTS, OR GOUGES). IF PIPES ARE FOUND TO BE DAMAGED, CONTRACTOR SHALL NOTIFY ENGINEER FOR REPLACEMENT OF EXISTING PIPE.
- 5. MANHOLES SHALL BE 48"¢ UNLESS OTHERWISE NOTED.
- 6. ALL NEW PIPES AND STRUCTURES SHALL BE THOROUGHLY CLEANED, INSPECTED, AND PRESSURE/VACUUM TESTED AS REQUIRED BY THE AGENCIES HAVING JURISDICTION. ALL TESTS MUST BE WITNESSED AND PASSED BY THE INSPECTOR PRIOR TO PLACING INTO OPERATION. CLEANING, INSPECTION, AND PRESSURE/VACUUM TESTS SHALL BE COMPLETED IN ACCORDANCE WITH THE LATEST CITY OF MUKILTEO SPECIFICATIONS. COORDINATE TESTING WITH ALL PARTIES A MINIMUM OF 2 WEEKS PRIOR TO SCHEDULED TEST DATE.


ပ

DETAIL

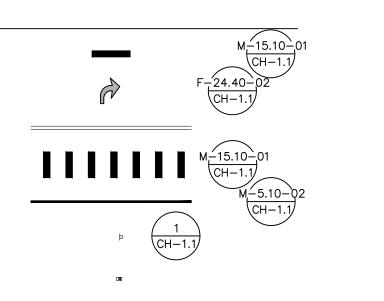
ROADWAY


Ю́Щ

WITH STA. 0+00 AT INTERSECTION OF 44TH AVE W AND 84TH STREET SW. SEE SURVEY FOR MONUMENT "FD_CONC MON W/BRASS DISC DN 1.1" /-8+47.50, 6.00'LT <u>-9+10.00, 6.00' RT</u> BEGIN DÓUBLE YELLOW / END EDGELINE 8+32.00, 6.00' RIT BEGIN[®] EDGELINE TAPER CENTERLINE EDGELINE -10+10.00, 6.00' RT BEGIN WIDE LINE (MATCH EXISTING) QS W QS W CONV WALK 8+00 9+00 10+00 Z Z 8+55.00, 25.50' RT -9+95.00, 25.50' RT RELOCATE EXISTING MAILBOX RELOCATE EXISTING MAILBOX ON NEW 4" X 4" TREATED POST ON NEW 4" X 4" TREATED POST 9+60.00, 18.00' RT END EDGELINE TAPER BEGIN EDGELINE

CROSSWALK STRIPING WIDE LINE STOP SIGN

NOTES:

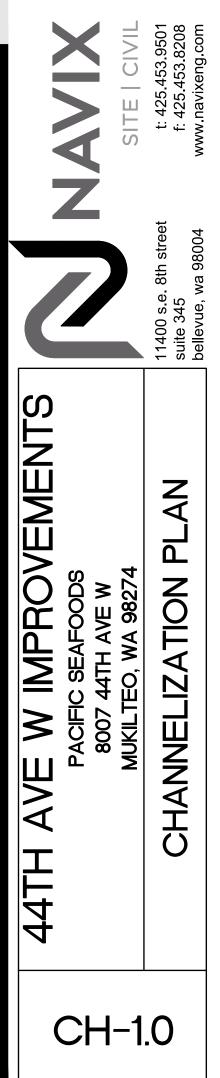

LEGEND:

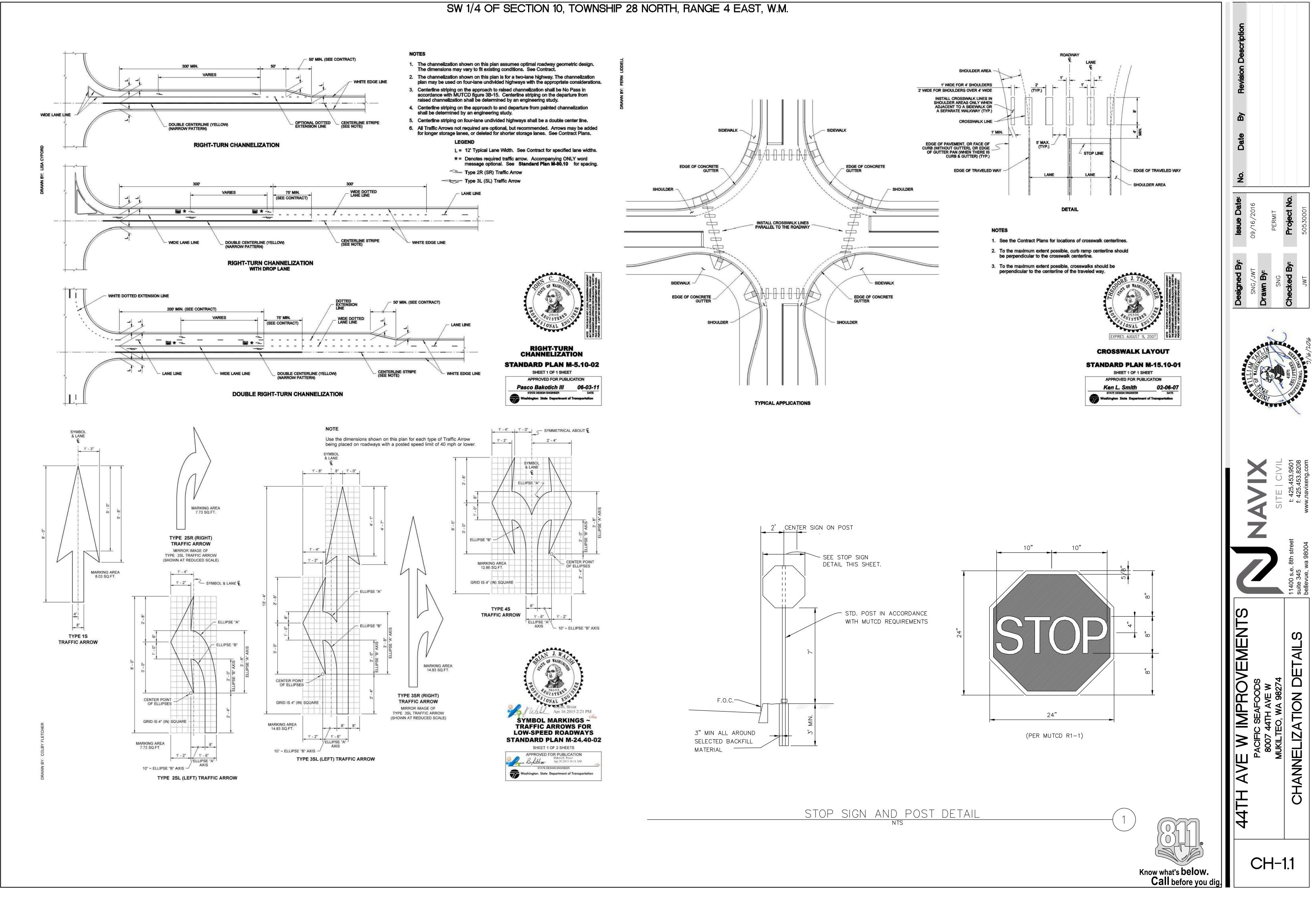
24" WIDE STOP LINE

WSDOT TYPE 2R RIGHT TURN ARROW

DOUBLE YELLOW CENTERLINE STRIPING

RELOCATED MAILBOX




1. SEE SHEET CH-1.1 FOR CHANNELIZATION DETAILS. 2. LONG LINE CHANNELIZATION, ARROWS, AND ASSOCIATED PAVEMENT MARKINGS SHALL BE PER WSDOT STANDARD PLANS AND SPECIFICATIONS.

Revision Description					
By Re					
Date					
Š					
Issue Date:	09/16/2016		PERMIT	Project No.	50530001
Designed By:	SNG/JWT	Drawn By:	SNG	Checked By:	JWT
)	, , ,

